
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Games Engineering

Data-adaptive Architectures and Training
Methods for Memory-efficient Volume

Scene Representation Networks

Maarten Bussler

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Games Engineering

Data-adaptive Architectures and Training
Methods for Memory-efficient Volume

Scene Representation Networks

Daten-adaptive Architekturen und
Trainingsmethoden für speicher-effiziente
Volume Scene Representation Networks

Author: Maarten Bussler
Supervisor: Prof. Dr. Rüdiger Westermann
Advisor: M.Sc Kevin Höhlein
Submission Date: 15.03.2023

I confirm that this master’s thesis in games engineering is my own work and I have
documented all sources and material used.

Munich, 15.03.2023 Maarten Bussler

Acknowledgments

I want to acknowledge

• ... Kevin Höhlein, my advisor, for his availability, support and time he put into
his helpful feedback,

• ... Luca Hohmann, Joshua Weggartner and Hendrik Rusch for proofreading,

• ... my friends and family for always keeping my mood up.

Abstract

Despite extensive research in the field of scientific data compression, modern visualiza-
tion tasks encounter the obstacle of managing both memory and network bottlenecks
when visualizing scientific data of high resolution at a smooth and responsive visual
feedback rate. Motivated by ever increasing data sizes, techniques to efficiently com-
press and decompress scientific data are much in demand. Recently, compression
methods that utilize neural networks have gained considerable attention in the visual
computing research community. These scene representation networks (SRN), represent
encoded data implicitly as an learned function and possess strong compressive capabili-
ties by limiting the complexity of the encoding network. This thesis proposes to increase
the compressiveness of learned data representations by using pruning algorithms in
combination with neural networks, thereby enabling the network to learn the best
tradeoff between network size and reconstruction quality during training. Furthermore,
a frequency encoding of a network’s feature space is proposed to enhance the pruning
capabilities of dropout methods and further improve the compression quality of SRN.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1

2. Preliminaries 3
2.1. Scientific Volumetic Data . 3
2.2. Compression Techniques for Scientific Data 4

2.2.1. TTHRESH . 6
2.2.2. Quantization . 6
2.2.3. Wavelet Transform . 7

2.3. Neural Networks . 10
2.3.1. Neurcomp . 11
2.3.2. fv-SRN . 14

2.4. Pruning of Neural Networks . 16
2.4.1. Trainable Masking . 18
2.4.2. Smallify . 19
2.4.3. Variational Dropout . 20

2.5. Neural Architecture Search . 24

3. Related Work 27
3.1. Scene Representation Networks . 27

3.1.1. Compressive Scene Representation Networks 30
3.2. Compression of Deep Neural Networks 32

3.2.1. Neural Network Pruning . 34

4. Implementation Details 39
4.1. Neurcomp . 39

4.1.1. Pruning Methods . 41
4.2. fv-SRN . 43

4.2.1. Pruning Methods . 44

v

Contents

5. Experiments 47
5.1. Experiment Setup . 47
5.2. Classical compression baseline . 48
5.3. Pruning on Neurcomp . 49
5.4. Pruning on fv-SRN . 63

5.4.1. Influence of Wavelet Transform on Pruning 71

6. Discussion 76
6.1. Effects of Pruning on Neurcomp . 76
6.2. Effects of Pruning in fv-SRN . 78
6.3. Comparison of Pruning on Neurcomp and fv-SRN 79

7. Conclusion 81

A. Figures 83
A.1. Pruning With and Without Quantization 83
A.2. Rendering of Data Sets . 84

List of Figures 85

List of Tables 87

Glossary 88

Acronyms 92

Bibliography 93

vi

1. Introduction

Voluminous scalar fields are subject to analysis in many scientific fields, such as
astronomy, geoscience, neuroscience or robotics and are often generated by large
scale scans or simulations. With increasing computational power, modern hardware
can generate high resolution 3D data of several terabytes in size to accurately depict
features of interest throughout the data domain. While this explosion of data opens
up more accurate and large scale research opportunities, it also leads to significant
challenges in data storage, processing, and transmission. Consequently, scientific
and visual data processing tasks are faced with the problem of how to handle such
complex data while providing the smooth interactivity and visual feedback needed
to perform analytical tasks. To address these challenges, data compression schemes
have been proposed to obtain more compact and manageable data representations to
speed up data transmission and processing and enable more efficient data analysis.
Popular compression algorithms include ZFP [Lin14] or TTHRESH [BLP19], which
sacrifice some data precision for a better compression. However, these algorithms often
rely on specific properties of the underlying data to be effective, such as a rectilinear
structure or an excess of local low-frequency detail in the data. As an alternative, scene
representation networks (SRN) have gained prominence in the field of visual computing
in recent years. These fully-connected neural networks implicitly represent encoded
fields by learning a function that maps spatial positions from the encoded domain to
a decoded scalar value. By limiting the complexity of the network (e.g. the amount
of parameters in the network) to be smaller than the resolution of the original data,
these networks themselves act as compressed versions. Neural networks make few
assumptions about the characteristics of the underlying data. Instead, during training
the network learns the most important features to approximate a given field and is able
to reconstruct the encoded data at arbitrary resolution. Scene representation networks
are also able to provide random access to the data, allowing for efficient processing and
visualization of large data sets. Moreover, these networks are able to exploit non-local
coherence of the data, enabling to exploit complex relationships and structures that
may be missed by conventional compression methods.

Motivated by the success of SRN in visual computing tasks, this thesis investigates
possibilities of further increasing the compressiveness of learned data representations
by using pruning and dropout algorithms in combination with neural networks. While

1

1. Introduction

dropout was originally introduced to mitigate overfitting in neural networks [Hin+12],
recent research suggest that it can also be utilized as a means of network compression.
By utilizing pruning and dropout algorithms, a network can learn which internal nodes
and features are most critical to reconstruction quality. The network can then remove
the uncritical nodes from the network architecture, thereby learning the best tradeoff
between network size and reconstruction quality during training.

Specifically, this thesis analyzes the effects of pruning methods such as Small-
ify [Lec+18] and variational dropout [KSW15] on modern SRN such as Neurcomp [Lu+21]
and fv-SRN [WHW22]. Moreover, this work proposes a frequency encoding of a net-
work’s feature space to enhance the pruning capabilities of dropout methods and
further enhance the compression quality of SRN.

This thesis is organized into seven chapters. In Chapter 2, preliminary knowledge
about neural networks and data compression is introduced. Chapter 3 presents a
comprehensive review of the existing literature on SRNs and network compression.
Chapter 4 reviews the implementation of Neurcomp and fv-SRN, as well as the utilized
dropout algorithms. In Chapter 5, experiments on the improvements of SRNs and the
internal workings of the dropout methods are depicted. Finally, chapter 6 discusses
and reviews the experiments and chapter 7 presents a conclusion summarizing the
findings.

2

2. Preliminaries

In this chapter preliminary knowledge about scientific data, neural networks and
scientific data compression is explored.

Specifically, the network architectures of Neurcomp [Lu+21] and fv-SRN [WHW22]
for implicit data compression are introduced.

2.1. Scientific Volumetic Data

To understand the process of volume compression, it is first important to realize the
general structure of volumetric data sets. Many visual effects (e.g., clouds, gases,
or liquids) are volumetric in nature with complicated or changing topologies and
are difficult to model with geometric primitives. As a solution, a specific form of
representation, the volume data set, was introduced. They are 3D entities that do
not consist of either tangible surfaces or edges and characterize the entire space that
encloses an object.

Volumetric data is typically understood as a set S of samples (x, y, z, v) of a continu-
ous scalar field over the examined space, where a value v represents a property of the
data (e.g., color, density, heat, or pressure) at a 3D position (x, y, z) [SF+00]. In most
cases, samples are taken at regular intervals along three orthogonal axes. A 3D grid
or tensor is usually used to store S, where the position of the element indicates the
position of the sample on the grid. Since the grid form of S is only defined at discrete
grid locations, various interpolation techniques such as trilinear or bicubic interpolation
are used to generate values at arbitrary continuous positions.

Volume data is obtained by numerous sampling, simulation and modelling techniques
and are thus of great interest for scientific research. In the medical field, MRI and
CT-Scans acquire data as 2D slices, which are later reconstructed in a volumetric fashion
for the purpose of better visualization. Many computational fields, like fluid dynamics
and computer vision tasks, such as semantic scene segmentation and classification,
also depend on volume data, as the results of simulations are often visualized as 3D
volumes for later analysis and interpretation [HJ11].

3

2. Preliminaries

2.2. Compression Techniques for Scientific Data

Scientific volumetric data is often the result of simulations or scans that produce high
dimensional scalar fields represented as floating points. Interactivity and fluent visual
feedback between the data set and the data consumer are critical for visualizing data in
real time and crucial for performing efficient analysis tasks. With recent technological
advances, scanners and computer simulations are becoming more powerful and produce
very explicit and in-depth volume data. Especially for scientific applications that work
predominantly with large arrays of floating-point numbers, the size of such large data
sets and the required loading and processing times pose a number of challenges in terms
of visualization, bandwidth constraints, data storage, accessibility and interactivity.
Data compression attempts to address these I/O-related difficulties by reducing the
size of records in memory and reducing transfer times to and from disk. In general,
data compression techniques can be assigned to one of two groups [Li+18]:

• Lossless compression is achieved by using patterns in the data. No information
is intentionally discarded, and apart from floating-point rounding errors, the
reconstructed data after compression will be the same as the original data.

• Lossy compression reduces the data by truncating insignificant values in the data
set. Therefore, the reconstructed data does not match the original data perfectly,
but much higher compression rates can be achieved than with lossless methods.
While these techniques generally attempt to minimize the introduced error, the
extent of information loss varies greatly from application to application, and often
the exact reduction parameters need to be modulated on a case-by-case basis.

For dealing with scientific data, lossy compression is often the prescribed strategy.
This policy is based on the observation that many applications and simulations, as
well as the floating-point format itself, allow for some error and can get by with
far less accuracy than originally intended. Furthermore the voluminous nature and
huge storage footprint of this data often requires the additional compression of lossy
methods to be effective. Unlike images and videos, scientific data generally requires the
construction of visual representations and an explicit rendering of those representations
for visualization. Typical representations include meshes, point clouds or volumetric
voxel grids, which can be obtained from scalar fields by isosurface extraction [LC87] or
by assigning colors and opacity values via transfer functions of direct volume rendering.

These representations are often compressed by exploiting spatial and temporal
coherence in the data and by applying sparsifying transforms. Early work in this area
focused on applying a series of Fourier decompositions and later wavelet transforms
(JPEG2000 [TM02]) to the data, separating low and high frequency details and allowing

4

2. Preliminaries

compression by discarding high frequencies while preserving low, basic frequencies.
TTHRESH [BLP19] extends this idea and applies a singular value decomposition on
tensors to greedily compress data subparts of progressively less importance. Other
important compression algorithms include SZ [DC16] or ISABELA [Lak+13], which
linearize multidimensional data and then replace data entries with a best-fit curve-
fitting model or monotone B-splines that accurately predict successive data points.
Another widely used compression algorithm is ZFP [Lin14], which compresses high-
dimensional floating-point arrays by dividing the large array data into smaller cubic
blocks. Each block is then compressed individually by applying a transform to the grid
values, ordering the transformation coefficients by size, and truncating insignificant
bits of the smaller coefficients.

While effective, the success of these compression methods depends on the structure
of the underlying data, e.g. if the data is composed of largely low-frequency fourier
bases or admits low-rank decomposition for other transform based approaches. These
compression algorithms also often impose some constraints on random access ability
of the data, thereby further limiting their use for interactive applications.

While research on traditional data representation formats such as 3D meshes, point
clouds, and volumetric data has led to great advances in areas such as 3D scene
understanding and scene interaction, these data formats are limited by their achievable
spatial resolution in regards to their memory footprint and the need for explicit
3D supervision for generation. This thesis aims to leverage the increasing interest
in applying machine learning principles to data visualization tasks and examine
methods for developing learning-based compression algorithms. Specifically, the
work in this thesis is interested in continuous Neural Scene Representation Networks
(SRN) that model both voluminous 3D scene geometry and appearance implicitly
as a continuous, differentiable function. By mapping a 3D world coordinate to a
feature-based representation of the scene properties at that coordinate, SRN are able to
randomly access their encoded data, while operating at arbitrary spatial resolution in a
memory-efficient manner. Compressing such implicit scene representations provides
the opportunity to create a compression scheme that takes advantage of both the global
and local coherence of the data and makes little assumptions about the properties
or structure of the underlying data. Although these learning based compression
methods can achieve remarkable results on their own, they are often coupled with
traditional, non-trainable compression algorithms to enhance the encoding of their
network parameters.

The following subsections provide a general overview of the non-learning based
compression algorithms discussed in this thesis. Each technique has different tradeoffs
in terms of compression ratio, Processing time, and susceptibility to errors.

5

2. Preliminaries

2.2.1. TTHRESH

TTHRESH [BLP19] is a lossy thresholding algorithm that combines low approximation
errors with smooth and dynamic target compression ratios. The compression algorithm
leverages the higher-order singular value decomposition (HOSVD [BP16]), a tensor
decomposition that generalizes the 2D matrix SVD to higher dimensional tensors, to
approximate a given input data set by a set of orthogonal factor matrices and a core
tensor. The algorithm then applies adaptive bit-plane coding, run-length coding and
arithmetic coding to compress the underlying data by thresholding HOSVD transform
coefficients and bit planes of less importance. TTHRESH achieves competetive quality-
compression results and outperforms other compressors, such as ZFP [Lin14] and
SZ [DC16] in terms of reconstruction quality, especially at higher target compression
ratios. However, the algorithm is slowed down by its inflexible approach to compressing
the SVD matrices and the core as a whole, which increases the cost of random access
decompression and results in comparatively slow reconstruction time.

In this work TTHRESH is used as a baseline for modern compression algorithms
without neural networks.

2.2.2. Quantization

Quantization is a lossy compression technique that limits the complexity of the input
data by reducing the precision of the data values [Li+18]. Quantization is rarely used
on its own, but forms the basis for numerous complex compression methods and
is usually combined with other compression algorithms. In this thesis quantization
is used on SRN to limit the precision of the network parameters and to reduce the
required storage size, thereby increasing the compression rate of the network at the
cost of reconstruction accuracy.

Compression is achieved by mapping from floating point values to a finite set of fixed
output values (bins), which serve as approximations of the input data (Figure 2.1). For
example, the rounding of floating point values to integer values could be considered a
simple form of a quantization process. The device or function that performs the specific
mapping of the data is called a quantizer, while the difference between the original value
and the mapped value (e.g. the rounding error in case of rounding floating points to
integers) is referred to as the quantization error. Considering the many-to-few mapping
of the input data, quantization is a nonlinear and irreversible process. As a result, it is
impossible to recover the exact original value of the input data, since numerous input
values are assigned the same output values.

Input data sets often differ greatly in their value distributions. For this purpose, and
to improve the approximation ability of the bins, the mapping schema can be adjusted

6

2. Preliminaries

to best capture the underlying data and to reflect the uniform or non-uniform value
distributions.

Figure 2.1.: Illustrative example of the process of quantization. A sine wave (blue) is
approximated and and encoded with quantization (green). Each output
value is encoded with 3 bits. Adapted from [Bha18].

2.2.3. Wavelet Transform

The wavelet transform is a technique for analyzing image, video and audio signals
in the time and frequency domain. This is done by decomposing a signal into a set
of components of varying frequencies and durations that perform well in capturing
local features of the base signal [dCM00]. This decomposition of the base signal is
advantageous for multiple compression algorithms. From a high level viewpoint,
wavelet compression treats input signals as set of wavelets and uses wavelet transforms to
gather information about the input file. In an abstract way, wavelets can be viewed as
the changes in the input data, measured as the deviation of a single data value from
zero. By recording the distance of deviation from each data point as a coefficient, a
set of wavelets can then represent the original data. The process of measuring and
recording these coefficients of data points is called wavelet transform.

Different coefficients represent distinct global or local information, and often only a
handful of coefficients contain significant information of the original signal. Traditional
compression algorithms leverage the wavelet transform for compression by quantiz-

7

2. Preliminaries

ing or truncating the coefficients to varying degrees of accuracy, depending on how
important the coefficient is to the reconstruction accuracy of the base signal. In this
work this data sparsification approach is utilized in combination with learning-based
compression schemes: By encoding the feature space of a neural network with the
wavelet decomposition, the network is able to identify the most important components
and can discard the rest. This results in a more memory-efficient representation of the
network’s feature space.

In a more mathematical form, wavelets are functions that can be used to split an input
signal into different frequency bands (sub-bands). Just like the Fourier-Transform [BB86]
represents a signal as the sum of sine and cosine signals, the wavelets can be linearly
combined to synthesize a signal. Unlike the Fourier-Transform however, wavelets at
different scales all derive from the same basis wavelet through translation and dila-
tion [ZB21]. Given a basis wavelet Ψ(t), smaller wavelets can be derived through:

Ψa,b(t) =
1√
a
· Ψ(

t − b
a

) (2.1)

where the coefficient a amounts to dilating, and b to translating the basis wavelet. The
wavelet transform X(a, b) can then be described as the product of the smaller wavelets
and the base signal x(t):

X(a, b) =
∫ −∞

∞
x(t) · Ψa,b(t)dt (2.2)

This approach offers the possibility to analyze signals with a much more flexible tiling
of time and spatial frequency (See Figure 2.2) and provides a way to order different
frequency components of the base signal in a hierarchical fashion. By combining short
high frequency base function with longer lower frequency ones, wavelet transform
provides a set of basis functions that can accurately and compactly represent local
features, as well as the large-scale characteristics of the base signal.

The discrete wavelet transform (DWT) is a discrete version of the continuous wavelet
transform formulation in Equation 2.2. The DWT divides a signal into a set of sub-bands
by convolving the original input data with a discrete low-pass filter h and high-pass
filter g of fixed length at intervals of 2. The sub-band resulting from the low-pass
filter contains a basic, downsampled version of the original data, while the high-pass
filter localizes the high-frequency detail of the signal. The low-pass detail can then be
iteratively transformed again to form a higher level wavelet transform and to increase
the frequency resolution of the wavelet representation [Nec04]. The construction of h
and g depend on the underlying basis wavelet, where common a choice is the family of
Daubechies [VBU07] wavelets, e.g. the Haar [SF03] wavelet.

8

2. Preliminaries

JPEG2000 [TM02] is a concrete example of a non-trainable compression algorithm
that uses wavelet transforms. The algorithm aims to improve the JPEG-compression
standard with a compression method that offers a better compression rate and fewer
artifacts. The algorithm first employs a set of 2D wavelet filters to transform pixel
information of the input image into wavelet coefficients. The coefficients are then
grouped into sub-bands and arranged hierarchically, with the low-frequency, basic
information encoded in the lowest level and the higher-frequency details encoded in the
higher levels. Code blocks (bit streams of data) are then generated from each sub-band
and ordered according to their importance to the reconstruction quality. Compression
is then achieved by quantization and truncation of the bit streams in the code blocks.

Figure 2.2.: A combination of a sine signal and an impulse function (top left) is captured
in the time domain (top right), frequency domain (bottom left) and wavelets
as a combination of time and frequency (bottom right). The time domain
can accurately depict the impulse in time, but has troubles representing
the frequency of the sinus signal. The frequency domain can localize the
sinus signal, but has uncertainties in time. In contrast the wavelet transform
tiles the frequency-time plane more adaptively (higher time resolution
at higher frequencies) and can thus represent both short duration high
frequency components and longer low frequency components of the base
signal. Adapted from [ZB21].

9

2. Preliminaries

2.3. Neural Networks

Neural networks are algorithms designed to solve problems that are difficult to define
by formal mathematical rules and are therefore difficult to program directly. An
example would be the tasks of speech or face recognition. In machine learning, these
problems are addressed by enabling the algorithm to learn from experience and build
complex concepts and functions by combining simpler functions. As such, a simple
neural network consists of a set of interconnected neurons (nodes) grouped in an input
and output layer. Each node encapsulates a simple linear function that is augmented
with a nonlinear activation function to introduce nonlinear behaviour into the network.
According to the universal approximation theorem [KA01], a neural network can
approximate any function through its learned parameters.

Deep neural networks (DNN) are a subclass of neural networks that realize more
complex functions by nesting multiple layers of neurons between the input and output
layer (hidden layers) (See Figure 2.3). To learn a particular task, a DNN trains its network
parameters by minimizing the error between the observed data (predicted by the
network) and the expected data (ground truth) [CK19]. For this purpose, the total loss
between the predicted and the expected data is propagated from back to front in the
network and the loss gradient of each weight is calculated (called Back-Propagation).
Then, each weight is updated according to the calculated gradient.

In this work a deep neural network is formally defined as a tuple f = (L, T, Φ),
where L = {Lk | k ∈ {1 . . . K}} is a set of layers consisting of sk nodes. T ⊆ L × L
are the connections between layers (weights) and Φ = {ϕk | k ∈ {2 . . . K}} is a set of
functions for each non-input layer. Except for inputs, every node is connected to nodes
in the preceding layer, such that

yk,l = ϕk(bk,l + ∑
1≤h≤sk−1

wk−1,h,l · xk−1,h) (2.3)

yk,l is the output of the l-th node of layer k. wk−1,h,l represents the weight of the
connection between the h-th node of layer k − 1 and the l-th node of layer k, bk,l being
the bias for node nk,l , ϕk the nonlinear activation function of layer k, and xk−1,h the output
of the previous node [Sun+18].

Neural networks are flexible and powerful tools that achieve state-of-the-art results in
a wide variety of visualization tasks, such as object detection, recognition, or generation.
Recent advancements in machine learning have also led to an increasing interest in
representing arbitrary data through neural networks for rendering and replication
along with compression [Xie+22]. One example are Scene Representation Networks
(SRN) [SZW19], which represent data as a continuous function. In case of a 3D scene,
this function can be trained from samples of the scene or a set of 2D input images

10

2. Preliminaries

and poses, and encodes both geometry as well as appearance of the original scene. By
limiting the number of parameters used in the network to be less than the original
resolution of the scene, these approaches can obtain compressed volume representations
optimized for the best approximation of the scene to its samples.

The goal of this thesis is to analyze the compressive quality and ways of opti-
mization for two selected (SRN) architectures: Neurcomp [Lu+21] by Lu et al. and
fv-SRN [WHW22] by Weiss et al. The next two subsections will examine these two
network architectures more thoroughly.

Input Layer Hidden Layer Output Layer

Figure 2.3.: Example of a fully connected deep neural network. The network consist of
an input layer, three hidden layers and an output layer. Each layer consists
of neurons that hold weighted connections to the neurons of the subsequent
layer. In this example, the input layer takes three input variables and feeds
them into the network. The four neurons of each hidden layers then extract
and pass along features from the input of the preceding layer until the
output layer interprets the extracted high level features to a scalar value.

2.3.1. Neurcomp

Neurcomp [Lu+21] is a lossy compression method to represent voluminous scalar fields
with implicit neural representations. This is done by representing a scalar field with a
neural network as a learned function, where the network takes samples of the field as
input and maps them to scalar output values. Decoding the original scalar field from
the network is then a simple process of sampling the network using ray tracing and
visualizing the results using direct volume rendering. Assuming the network weights
and volume are of the same precision, significant compression can be achieved by
limiting the number of network parameters to less than the volume resolution. The

11

2. Preliminaries

level of compression thus follows from the permitted amount of parameters. This
compression approach makes few assumptions about the characteristics of the input
data and has been shown to outperform conventional state-of-the-art compression
algorithms through its consistent results in terms of compression results and approx-
imation quality. In this work Neurcomp is used as a baseline algorithm to explore
the possibilities of increasing the efficiency of compression techniques based on fully
connected neural networks.

SIREN [Sit+20] has recently been shown to have good properties for representing
3D data. The work by Sitzmann and Marte proposes to leverage periodic activation
functions together with fully connected layers, in order to capture a signal’s higher
order derivatives. Compared to traditional ReLU-based networks, this method allows
for much faster and more detailed data fitting, without needed preprocessing of the
data. A layer in the SIREN network is defined as

Φi(xi) = sin(ωiWixi + bi) (2.4)

where Φi is the i-th layer that consists of the weights Wi and bias bi. The weights
and biases of each layer are initialized according to an uniform initialization scheme
Wi ∼ U (−

√
6/n,

√
6/n), with n describing the size of input features of the layer. This

initialization makes sure that the initial prediction of the network does not depend on
the number of network layers and that the input for each sinusoidal activation is normal
distributed in [−1, 1]. ωi serves as a scale hyperparameter that increases the spatial
frequency of the first layer to better match the frequency spectrum of the underlying
signal.

Figure 2.4 depicts a general overview of the Neurcomp network structure. Neurcomp
defines it’s architecture by a sequence of fully-connected SIREN layers that use sinu-
soidal activation functions. The network layers are organized in residual blocks [He+16]
to secure the robustness and stability of the network even for deeper models with
many layers. The invention of residual blocks is based on the observation that a neural
network with many layers sometimes performs worse on a prediction task than a
comparably shallow and simple network. As stated before, deep neural networks excel
at extracting complex features out of the input data and are able to learn complicated
functions. However, in feeding the input deeper and deeper into the network layers,
the network discards the input of each layer and thus looses access to the low-level
basic information of the input. This behaviour can lead to an accuracy drop of the net-
work predictions, since both low- and high level information are needed to accurately
represent the original data. A residual block aims to solve this problem by routing
incoming input to the next layer and directly to a deeper layer two or three layers away.
By concatenating new extracted features and lower-level features from higher up in the
network as input for a network layer, the low-level features are preserved for a longer

12

2. Preliminaries

time inside the network, and stability and prediction accuracy of the network increases.
In full, a residual layer in the Neurcomp network is thus defined as:

Φi(xi−1) = 0.5 · (xi−1 + sin(W2
i · sin(W1

i · xi−1))) (2.5)

where xi−1 is the output of the previous residual block i − 1, Φi is the current block
and W2

i as well as W1
i are a pair of learnable weight matrices associated with block i.

During training, a data set X is probed at random positions pi and the resulting
spatial positions are normalized and fed into the network. The network is optimized
with backpropagation, where the training loss consists of a volume loss that compares
the predicted result of the network parameterized by Θ ∈ Rm against the ground truth
with a mean squared error loss:

min
Θ

∑
i
(fΘ(pi)− X[i1, i2, . . . , id])

2 (2.6)

Additionally, the use of sinusoidal activation functions in the network layers makes
it possible to optimize for higher order derivatives of the scalar input field as well.
This enables the network to also optimize for and preserve the gradient information of
the original input data, in addition to the provided scalar field values. Incorporating
gradient information into the network optimization process increases the reconstruction
accuracy of Neurcomp, as the acquisition of higher order information is beneficial,
for example, to avoid artifacts on isosurface contours. To this end, the training loss
is enhanced with an optional loss term that encapsulates the difference of the pre-
dicted network gradient to the gradient field of the original data. The final training
optimization thus amounts to the following equation:

min
Θ

∑
i
(fΘ(pi)− X[i1, i2, . . . , id])

2+

λg · ||(∇ fΘ(pi)− X′[i1, i2, . . . , id])||22
(2.7)

where λg is the weighting of gradient loss to the volume loss. Optimization is then
performed with the ADAM algorithm [KB14]. The user can also specify a learning rate
strategy that adjusts the learning rate of the optimization during training.

After training, the compression ratio achieved by Neurcomp depends solely on the
choice of network complexity as the number of parameters in the network m against the
resolution of the original data C and can be described as C

m . The authors of Neurcomp
note that the distribution of weights in each network layer roughly resemble a normal
distribution. They recognize that further compression can be achieved by quantizing
the network weights (see subsection 2.2.2). Similar to the deep compression approach
of Han et al. [HMD15], quantization is performed by encoding the weight values of
each layer with k-means clustering.

13

2. Preliminaries

For inference and decoding of the compressed data, the quantized network param-
eters are first restored. The space of the original data is then probed and the spatial
positions are fed into network, which predicts and reconstructs the encoded data. The
reconstructed scalar values can then either be interpreted as-is, transferred into another
data format, or used in combination with direct volume rendering techniques (like
proposed in NERF, see subsection 2.3.2) to render a volumetric representation.

x

y

z

f(x, y, z)

X(x, y, z) Loss

Figure 2.4.: Overview of the Neurcomp compression method. Encoding is done by
tasking the network f to predict scalar values f (x, y, z) with given ground
truth data X(x, y, z) at coordinates (x, y, z). The network is composed
of a set of fully connected layers (violet boxes) with periodic activation
functions (yellow boxes) and a linear layer without activation at the end.
The dashed arrows and red boxes represent residual connections. Adapted
from [Lu+21].

2.3.2. fv-SRN

Fast Volumetric Scene Representation Networks (fv-SRN) by Weiss et al. [WHW22]
represent another compression approach for 3D scalar fields that achieves high re-
construction quality by training neural networks to implicitly represent the original
data. For many conventional SRN-approaches, such as Neurcomp [Lu+21], the size
of the encoding network heavily impacts the training and test time. Their usability in
real-time applications is thus held back by their need for many computationally heavy
and slow forward passes and long rendering time.

In contrast, fv-SRN extends research on implicit neural representations by proposing
a compressive network architecture that focuses on real-time applicability. To this end,
the authors of fv-SRN divide the traditional monolithic network architecture into a
latent feature space and a relatively small fully connected network that utilizes the
feature space for a higher reconstruction accuracy of the original data. The feature
space is trained simultaneously with the rest of the network and consists of a grid that

14

2. Preliminaries

holds feature vectors at its vertex positions. These feature vectors represent the majority
of network parameters in the architecture and hold high-level semantic information
about the encoded data that can be interpreted by the network. Since the feature grid
contains most of the implicit expressive power of the network architecture and the
fully connected network itself is quite small, Weiss et al. are able to load the network
parameters into the shared memory space of a GPU. They can then use GPU tensors to
integrate data reconstruction into efficient on-chip ray tracing, resulting in significantly
faster decoding times. In this thesis fv-SRN is used as a baseline algorithm to investigate
opportunities to use dropout algorithms in combination with smaller networks that
store most of their parameters in a separated data structure, like the feature grid.

Figure 2.5 portrays the internal network architecture of fv-SRN. At training and
inference time, the neural network itself is provided with a spatial input coordinate p
and tasked with predicting the original scalar value at p. The network consists of a set
of fully connected layers, with the i-th layer defined as:

Φi(xi) = ϕ(Wi · xi + bi) (2.8)

where xi is the output of the previous layer and input to the current layer, Wi and bi
are the weights and biases of the current layer and represent the trainable parameters
of the network. ϕ represents a non-linear periodic activation function, similar to the
sinusoid SIREN activations in Neurcomp (see subsection 2.3.1). The authors of fv-SRN
reason that the SnakeAlt function slightly improves the prediction quality of the network
compared to the standard ReLU activations:

SnakeAlt(x) = 0.5 · x + sin2(x) (2.9)

Additionally, fv-SRN employs a high frequency input embedding, to further enhance
the reconstruction quality of the network. The idea of a supplementary input encoding
stems from work of Basri et al. [Ron+19] as well as Rahaman et al. [Rah+19] showing
that neural networks are biased to learn lower frequency functions easier than higher
frequency functions. This leads the network to first fit to the low frequency components
of the target function, and then to the higher frequency parts. If data is missing
and needs to be predicted, the Network as such interpolates with a low-frequency
function instead of a more straightforward curve that would introduce higher frequency
components. The network itself acts as a smoothing filter on the original data, that
needs to be accounted for. Consequently, most scene representation networks without
any form of frequency embedding result in renderings that only poorly capture high
frequency variation in color and geometry. To counteract this issue, the authors of
NeRF [Mil+20] propose to leverage high frequency functions to map the original input
to a higher dimensional space before passing it to the network. They point out that

15

2. Preliminaries

this mapping increases computation time, but also enables the network to better fit to
higher frequency components of the data and significantly increases rendering quality.
In the case of fv-SRN, Weiss et al. decide to enrich the input coordinate p with a Fourier
Feature encoding γ that applies sinusoids of varying frequency on p:

γ(p) = [sin(20πp), cos(20πp), ·, sin(2L−1πp), cos(2L−1πp)]

where L is a hyperparameter describing the number of encoding frequencies.
Lastly, fv-SRN employs a three dimensional discrete latent feature grid that holds

feature vectors at it’s vertex positions. This approach originates from the observation
that a Scene Representation Network small enough to fit in the shared memory of
a GPU to allow interactive rendering does not have the expressive complexity to
accurately represent the encoded data. To solve this problem, the feature grid and its
feature vectors are trained simultaneously with the small network and used to store
semantic information about the encoded data that can be utilized by the network to
make accurate predictions. When training and evaluating the network, the feature
grid is thus interpolated at position p and the resulting feature vector is passed to the
predictor network as additional input, along p and γ(p).

The latent feature grid and network layers are trained with backpropagation, where
a volume loss similar to the mean squared error loss applied in Neurcomp (see Equa-
tion 2.6) is used. Inference and reconstruction of the original data is also similar to
Neurcomp: the latent feature grid and parameters of the fully connected layers are
loaded from memory and used to predict the scalar values of the encoded data. These
can then be combined with direct volume rendering techniques to reconstruct the
original data.

2.4. Pruning of Neural Networks

Neural networks achieve great success in many visualization tasks and are a topic of
great interest in modern artificial intelligence research [LSV19]. To generate neural
networks with high accuracy, these works often rely on deep architectures with many
layers and millions of parameters. The high number of parameters make DNN memory
intensive, and access to GPUs with high computational power and long training times
are essential for the success of these types of networks. This hinders the deployment of
deep learning systems in portable devices with limited memory and computational
power, as well as in real-time applications with stringent latency requirements. As
a result, much research has been conducted to rethink established data compression
algorithms for application to neural networks in order to achieve model compression
and acceleration without significant degradation of model performance.

16

2. Preliminaries

x

y

z

latent feature grid

f(x, y, z)feature encoding

X(x, y, z) Loss

Figure 2.5.: Overview of the fv-SRN architecture. Given data X and a spatial position
(x, y, z), the network f predicts a scalar value f (x, y, z) that is compared
against the ground truth X(x, y, z) for training. The network is composed of
a small set of fully connected layers (violet boxes) with SnakeAlt activation
functions (yellow boxes) and a linear layer without activation at the end.
The input for the network layers consists of the spatial position (x, y, z), a
feature encoding of (x, y, z), and a feature vector from a latent feature grid
interpolated at (x, y, z).

Recently, parameter pruning and dropout based methods have shown great success
in the area of neural network compression [Che+17]. These algorithms examine the
redundancy in the model parameters and attempt to remove the redundant and non-
critical parameters. Although different pruning strategies exist, most modern pruning
algorithms derive from the same high-level algorithm [Bla+20]: First the network is
trained to convergence. Afterwards, scores are issued to the network parameters, and
the network is pruned based on these scores. As pruning reduces the accuracy of the
network, it is often trained further (known as fine-tuning) to recover.

This thesis investigates the potential of pruning algorithms as a primary tool for
reducing network complexity and optimizing the compressive capabilities of the neural
network. To this end, two types of pruning strategies are investigated:

• Deterministic learnable masks that observe the network parameters.

• Probalistic dropout layers that omit each neuron with a specific dropout probabil-
ity.

Both approaches aim to learn the network parameters with the most influence to the
prediction accuracy and use sparsity inducing l0 or l1 regularizers to converge to a
sparse solution [LL16].

17

2. Preliminaries

In this study the potential of deterministic learnable masks in the form of a simple
binary mask and the Smallify algorithm by Leclerc et al. [Lec+18], as well as probalistic
dropout in the form of variational dropout [MAV17] are investigated. The following
sections explore these algorithms in more detail.

2.4.1. Trainable Masking

A simple idea for implementing a basic pruning method was given by Rho et al. [Rho+22],
who use a straight through estimator to train a binary mask on the network weights to
obtain a sparse representation of their underlying network. In the case of a simple, fully
connected network, such a pruning algorithm is implemented by introducing a series
of additional network layers subsequent to each of the original layers. These pruning
layers consist of neurons that receive the output of the previous layers as input, which
they then pass on to the subsequent layer after filtering out some of the information.
Filtering is done, for example, by functions that set an output to either 0 or 1, where a
value of 0 deactivates the output of the neuron and a 1 passes it along to the next layer.
The use of such binary neurons can be utilized to give rise to sparse representations of
the original network, where the most irrelevant neurons to the optimization task are
learned to be deactivated and can be pruned.

To this end, most neural networks use the backpropagation algorithm to train the
internal state of the network. This is done by computing the gradient of a given loss
function with respect to the network weights for an observed input-output pair. The
algorithm iterates backwards through the network, applies the chain rule and calculates
the gradient of each layer, given the gradient of the previous layer. According to a
calibrated learning strategy, the weights of each layer are then updated, to minimize
their impact on the loss. If the network contains the aforementioned binary pruning
layers, then the derivatives of these layers are mostly 0 everywhere (and go to infinity
if a neuron is not dropped), leading to gradients that are largely constant and flat, and
thus impractical for the Backpropagation algorithm. Training of binary pruning layers
without simplifications or estimations is thus not feasible.

The straight through estimator [BLC13] is a simple approximation technique that
aims to estimate the gradient of a loss function with respect to the input of binary or
otherwise non-smooth neurons. In the case of the simple binary pruning, the straight-
through estimator is used in backpropagation and serves as an approximator for the
gradients in such binary layers. This is achieved by simply ignoring the derivative
of the binary function represented by the pruning layer and passing on the incoming
gradient without modification, like the gradient of the identity function. Although this
is a very simple and biased estimator, it is relatively easy to implement and to compute,
and recent work by Le et al. [Le+22] and Rho et al. [Rho+22] note success with this

18

2. Preliminaries

method.
The masks are trained simultaneously with the rest of the network. Thus, the network

is able to learn which parameters are most important for reconstruction accuracy and
can turn off most of the unimportant network parameters without significantly affecting
prediction performance. To incentivise the network to learn sparse latent feature grid
representations, and additional pruning loss term is introduced to the overall training
loss. This is done in form of the l1 norm on the mask values of the pruning layers.
Since the l1 norm acts as a sparsity constraint that pushes the mask values M to 0, an
additional term for the network weights θ is added to the training loss to account for
the effects of the binary pruning layers on the overall loss function:

Loss(x, y; θ, M) = Loss(x, y) + λ1 · ||M||1 + λ2 · ||θ||pp (2.10)

2.4.2. Smallify

Smallify [Lec+18] is a form of targeted pruning that optimizes network size and inference
time during training. It uses structured pruning to remove neurons with the least
contribution to prediction accuracy from an oversized network, thereby learning the
optimal network size at the same time that the network optimizes for prediction
performance.

Pruning is done by extending the original, unpruned network with a new layer type,
the Switch Layer, that can switch neurons on and off. This layer-based approach to
pruning makes it easy to implement Smallify in numerous neural network frameworks
and existing network architectures. A Switch Layer is placed after each layer, which
size is supposed to be pruned and is co-optimized with the rest of the network during
training. Each Switch Layer is parameterized by a vector β ∈ Rc of size c, where c is
the number of neurons in the preceding layer. When the output of a Layer L passes
through the subsequent Switch Layer S, the output of each neuron i is multiplied by a
learnable βi ∈ [0, 1]:

Sβ(L(x)) = βi · L(x)i, ∀i ∈ [1, . . . , c] (2.11)

The β parameters are initialized according to a normal distribution: βi ∼ N (0, 1).
If βi = 0, the i − th neuron is multiplied by zero and is deactivated for any further
computations after the Switch Layer, while a βi- value of 1 will let the whole signal
go through. All deactivated neurons can then be safely removed from the network,
thereby shrinking network size and improving inference times.

The objective of Smallify is to maximize the number of deactivated switches to reduce
the model size as much as possible while maintaining prediction accuracy. This is
done by jointly training the network for it’s reconstruction accuracy and the pruning
layers for a high pruning rate by combining the training loss of the network with an

19

2. Preliminaries

additional pruning loss of the Smallify method. The pruning loss applies a l1 norm to
the β parameters of the Switch layer, thereby incentivising the Switch layer to deactivate
neurons. To account for the scaling of the Switch Layers on the network activations
during training, the authors of Smallify propose to additionally implement a weight
loss that pushes the l2 norm of the network weights θ toward 0. The final loss used for
optimizing the network then consists of:

Loss(x, y; θ, β) = Loss(x, y; β) + λβ · ||β||1 + λw · ||θ||pp (2.12)

where λβ and λw control the influence of the added pruning and weight losses on the
optimization.

Finally, the authors of Smallify note that it is unlikely that the unimportant compo-
nents of β will ever be exactly 0 and propose a different approach to the deactivation of
neurons. They recognize that the l1 penalty causes irrelevant neurons to oscillate their
Switch Layer close to 0, while never reaching exactly 0. To detect this case, they propose
to deactivate neurons according to the Sign Variance Strategy: At each update the sign
of each β-component (−1 or 1) is measured. Then, the exponential moving average
(EMA) of its mean and variance are calculated. If the variance exceeds a predefined
threshold, the neuron is considered not to contribute significantly to the output and is
therefore disabled.

2.4.3. Variational Dropout

Variational dropout is proposed by Molchanov et al. [MAV17] as an effective tool for
pruning networks with a high degree of dropout flexibility. The method is extended
by Neklyudov et al. [Nek+17] to a structured dropout algorithm that is more suitable
for pruning. Variational dropout extends dropout to Bayesian Networks and creates
an adaptive dropout scheme. This allows the dropout algorithm to treat the dropout
rate not as a preset hyperparameter, but it can be learned individually for each layer
through training.

Bayesian Neural Networks are a subclass of neural networks that excel at estimating
the uncertainties present in the prediction process of a neural network. This is useful
when the task of the network is not limited to making a particular prediction, but
also to informing the user of the network’s certainty that the prediction is correct
(for example when prescribing medication). In case of the network pruning process,
the parameters with the most uncertainty could then be pruned, since they carry
no meaningful information. Bayesian neural networks measure this uncertainty by
introducing stochastic components into the network in the form of stochastic activation
functions or stochastic weights. Instead of assigning static values to the parameters
of the network, the parameter values get modeled after specific distributions (See

20

2. Preliminaries

Figure 2.6) [Jos+22]. The estimated variances of these distributions can then be used as
an indicator of the model’s uncertainty for a given input.

Given a data set D consisting of input values X = {x1, . . . , xn} and observed values
Y = {y1, . . . , yn} the goal is to find parameters Θ for a neural network f , such that
fΘ(X) = Y. Following the Bayesian approach, this requires some prior knowledge
about the distribution of network parameters p(Θ). Here, the prior represents an initial
belief about which parameterizations of the network are likely or unlikely to produce
the observed values.

In Bayesian Inference, the data set D is used to transform the prior distribution into a
posterior distribution p(Θ|D) = p(D|Θ) · p(Θ)/p(D), which can be used to generate the
network parameters from [MAV17]. The bayesian posterior for neural networks is a
complex and highly non-convex probability distribution that requires the computation
of intractable multidimensional integrals to solve.

To address this problem, variational inference has been introduced as an approxima-
tion technique. Rather than sampling from the exact posterior, this approach uses
a parameterized distribution qφ(Θ). The values of the variational parameters φ are
then learned, such that qφ(Θ) closely resembles p(Θ|D) with a given initial prior
p(Θ) [KSW15]. The quality of this approximation is measured with the Kullback-Leibler
divergence DKL(qφ(Θ)||p(Θ|D)), which is combined with the expected log-likelihood to
form the variational lower bound for optimization.

Molchanov et al. [MAV17] and Neklyudov et al. [Nek+17] implement variational
dropout as a set of dropout layers that produce their output y by applying multiplicative
noise Ξ on the output of a preceding layer x ∈ Rl of size l:

yi = xi · Ξi (2.13)

where Ξ is treated as a continuous noise variable Ξi ∼ N (1, α = p
1−p) that has been

proven to work similar to a binary dropout approach, where a neuron is deactivated
with dropout probability p [Sri+14]. According to the variational inference approach,
multiplying noise on an activation value is the same as sampling the activation value
from a correspondingly parameterized Normal distribution [KSW15]. This means that Ξ
can be understood as being generated by applying a randomly sampled Gaussian noise
ξ ∼ N (1, α) on a mean value θ. Then Ξ is treated as a random variable parameterized
by θ and α:

Ξi = θi · ξi = θi · (1 +
√

αi · ϵi) ∼ N (Ξ|θi, α · θ2
i)

ϵi ∼ N (0, 1)
(2.14)

The noise values of the variational dropout layers are then generated by approximating
the sampling of the aforementioned Normal distribution through the posterior dis-
tribution q(Ξ|θ, α) and given prior p(Ξ). Molchanov et al. [MAV17] define p(Ξ) as a

21

2. Preliminaries

logscale uniform distribution, that samples points uniformly between two values log(a)
and log(b) and has been shown to have sparsification properties for neural networks:

p(log(|Ξi|)) = const ⇐⇒ p(|Ξi|) ∝
1

|Ξi|
(2.15)

The parameters θ and α are handled as variational parameters and optimized by
the dropout layer. Specifically, this enables variational dropout to tune α = p

1−p for
each layer, thus learning an optimal dropout rate for each layer. As the primary goal
of variational dropout is to produce sparse weight matrices, the case where α >> 1
is especially interesting, since αi → +∞ corresponds to a droprate p = 1 and the
affected neuron can be safely pruned. According to Molchanov et al. [MAV17], large α

values complicate the training of the variational dropout process, since the gradients
vary greatly in this case. They propose to reduce the gradient variance by replacing
the multiplicative noise term 1 +

√
αi · ϵi by an additive noise term σi · ϵi that treats

σ2
i = αi · θ2

i as a new independent dropout variable. The noise for each dropout layer
can then be generated as:

Ξi = θi · (1 +
√

αi · ϵi) = θi + σi · ϵi

ϵi ∼ N (0, 1)
(2.16)

During the training of a network, the goal is to maximize the structural sparsity of
the network architecture while maintaining the predictive accuracy of the network.
Given a data set D of N output-input pairs (yn, xn)N

n=1, this is done by substituting the
original optimization loss of the network architecture with the variational lower bound
L(Θ) to simultaneously train the prediction accuracy and sparsity of the network:

L(Θ) = LD(y|µ, psigma)− DKL(q(Ξ|θ, α)||p(Ξ)) → max
Θ

(2.17)

When applying variational dropout to a network, the predictions of the network have to
be understood as probabilistic rather than deterministic. This means that the network no
longer generates deterministic scalar values. It instead uses a network prediction µ and
a predicted or given variance psigma to define a posterior distribution N (µ, psigma)
over the ground truth data, which is then used in the optimization. LD(y|µ, psigma)
describes the expected log likelihood. In this stochastic environment it is the primary
substitute for the original ground truth network loss and is responsible for aligning the
predictions µ of the network with the ground truth data. If the input xn is fed into the
network and transformed by the network’s fully connected and dropout layers into a
prediction µ, the log likelihood is defined as follows:

LD(yn|µ, psigma) = −(yn − µ)2/(2 · psigma2)− log(
√

2 · π · psigma2) (2.18)

22

2. Preliminaries

This parameterization allows the sensitivity of the log-likelihood loss to the ground
truth data to be tuned using the parameter psigma, which is either statically fixed or
predicted by a second network.

The Kullback-Leibner divergence DKL(q(Ξ|θ, α)||p(Ξ))) acts as a regularization term
that trains the approximate posterior distribution q(Ξ|θ, α) of the dropout noise to
follow the assumed prior p(Θ). The DKL can be calculated by decomposing the
divergence term into a sum for each dropout layer i:

DKL(q(Ξ|θ, α)||p(Ξ))) =

∑
i

DKL(q(Ξi|θi, αi)||p(Ξi))
(2.19)

For the chosen approximate posterior q(Ξ|θ, α) = N (Ξ|θi, α · θ2
i) and prior p(Ξ), the

DKL divergence of each dropout layer cannot be computed analytically [KSW15], but
can be accurately approximated. Molchanov et al. [MAV17] propose to choose an
approximation that includes the sigmoid function σ(·) and numerous constants to
produce a function that behaves similarly to the true negative DKL divergence:

− DKL(q(Ξi|θi, αi)||p(Ξi)) ≈
k1σ(k2 + k3log(αi))− 0.5log(1 + α−1

i) + C

k1 = 0.63576 k2 = 1.87320 k3 = 1.48695

(2.20)

Since the prior defines the sparsifying properties of the variational dropout approach,
the DKL influences the sparsity of the final network configuration by favoring large
values of α.

In order to affect the prediction accuracy as little as possible with the pruning of the
neurons, one needs to make sure that the weights of neurons corresponding to dropout
nodes with high α values are close to 0. For this purpose, an additional weight-loss
is introduced to the variational lower bound that ensures that the layer weights with
noisy dropout input are shifted to 0:

min
Θ

LD(Θ) + λD · DKL + λw · ||Θ||22 (2.21)

where λD and λw are scaling terms for the DKL and weight loss fractions during
optimization.

Pruning is performed after training by calculating the α and dropout values for each
droppable neuron in the network and culling all neurons whose drop rate exceeds a
certain threshold. Then the weights of each layer are multiplied with the corresponding
θ parameters of the dropout layers and the dropout layers are discarded, in order to
not introduce an overhead of parameters to the network.

23

2. Preliminaries

A) Fixed Parameters B) Stochastic Activations C) Stochastic Weights

Figure 2.6.: (a) Traditional neural network with fixed values for the parameters, (b)
stochastic neural network with a probability distribution for the activations,
and (c) stochastic neural network with a probability distribution over the
weights. Adapted from [Jos+22].

2.5. Neural Architecture Search

Although neural networks are powerful tools for a variety of challenges, their success
depends heavily on the selection of appropriate hyperparameters by the user. Hyper-
parameters determine the network architecture (e.g., by specifying the number or size
of hidden layers) and the training process (e.g., by deciding how much data to use in
each training iteration or how fast to update the network’s parameters). As such, these
types of variables are not learned by the network itself, but are fixed before training.
The goal of Neural Architecture Search (NAS) is to reduce human interaction as much
as possible when searching for optimal hyperparameters of a neural network. The fun-
damental concept is to generate these parameters automatically, thereby ensuring the
best performance of the underlying network without relying on the researcher’s bias or
prior knowledge [Ren+21].

The task of Neural Architecture Search is closely interlinked with the task of multi-
objective optimization, which aims to maximize multiple defined objectives, given a
set of changeable parameters. In this case the NAS algorithm aims to maximize the
potential of the network with respect to a defined objective (e.g. generating a shallow
network with high prediction accuracy), while influencing the network by changing
the hyperparameters. In most cases, these problems possess no single best solution.
Rather, the goal is to compute a pareto frontier: a set of optimal trade-offs where the
improvement of one objective means the deterioration of another. Using the calculated
pareto frontier, an individual decision maker can then choose an objective trade off and

24

2. Preliminaries

specific parameters according to their preferences [Eri+21].
Early work in this domain includes MetaQNN by Baker et al. [Bak+16], which uses

reinforcement learning to automatically generate high performing network architectures.
Reinforcement learning is based on a reward function, which defines a certain goal
and assigns reward values to certain states or actions. This enables a neural network to
autonomously learn different strategies for different situations to maximize the given
reward. By defining a finite and discrete search space for the network parameters,
as well as specifying the reward function to encompass a goal for multi-objective
optimization, this method can be used for Neural Architecture Search. In this case, the
network alternates between phases of exploration, in which it learns about its search
space through random sampling, and exploitation, in which it uses its prior knowledge
to select more powerful models.

Large-Scale Evolution by Real et al [Rea+17] is a another widely used method for
Neural Architecture Search. The method treats NAS as a kind of tournament where
model architectures of high quality win over lower ones. This is done by managing
a population of trained architectures and assigning a quality measure to each model
based on model accuracy or other user-defined characteristics. In each search step two
models from the population are compared at random and the architecture with lower
quality is removed from the model pool. The winning model is then selected as the
basis for a newly created model, where a mutation strategy changes the parameter of
the parent model and applies them to the child model. The child model is then trained,
evaluated, and put in the population to act as a parent model in the next search step.

While both reinforcement learning approaches and evolutionary algorithms are
popular choices for solving multi-objective optimization, both methods suffer from a
high sample complexity, making them infeasible for optimizing functions with large
parameter search spaces that are expansive to evaluate.

In this work AX [Bak+18] is used to run multi-objective NAS for parameterizing
learning-based compression algorithms. In order to find the best tradeoffs between
multiple objectives of interest, e.g. maximizing model accuracy while minimizing
model size, AX uses a bayesian optimization strategy. Bayesian optimization treats
the optimization of neural networks as a black-box optimization problem, where the
network fΘ(x) is a black box without any insight about analytical expressions of
f or its derivatives. Thus, evaluation of f is restricted to sampling and feeding a
point x into the network and determining a possibly noisy (e.g., by measurement
error or randomness in network training) response. Bayesian optimization is a model-
based optimization method that incorporates a prior belief about f and updates
the prior during optimization to generate a posterior that better approximates f .
The model used to approximate f is called the surrogate model, while the acquisition
function decides which parameters in the search-space should be evaluated next. While

25

2. Preliminaries

evaluating the true black-box function can be time-consuming or costly, evaluating
the surrogate is inexpensive, relatively fast, and parallelizable, which is why bayesian
optimization has established itself as a sample-efficient method for searching neural
architectures [Kan+18].

The work of Eriksson et al. [Eri+21] extends this method by fusing bayesian optimiza-
tion with the acquisition function for parallel noisy expected hypervolume improvement
(qNEHVI)[DBB21]. The implementation of qNEHVI on top of bayesian optimization
allows for parallel evaluation of multiple architectures and naturally smoothes the
observational noise present in both the latency and accuracy metrics. This allows the
experiments conducted in this thesis to perform efficient and parallel multi-objective op-
timization and thus provides each experiment with the best network parameterizations
of the different network architectures under investigation.

26

3. Related Work

This chapter discusses the current state of research on Scene Representation Networks
and network pruning algorithms, and provides justification for the selection of specific
model architectures and network compression algorithms examined in this work.

3.1. Scene Representation Networks

Traditional graphics representations, such as meshes, point clouds, and volume data,
are widely used as reliable all-purpose tools in a variety of applications, from visual
effects and computer games to three-dimensional computer vision. Although these
traditional representations are well researched, they have their own drawbacks and
may not be suitable for new emerging applications in neural rendering, imaging, and
simulation. Modern research in these areas often needs data of high resolution that is
scalable in learning-based pipelines and as such end-to-end differentiable and quickly
optimizable. Conventional representations often conflict with these properties because
their accuracy scales according to the Nyquist sampling criterion and necessitates the
explicit storage of spatiotemporal samples in memory.

A wide variety of Scene Representation Networks (SRN) have been developed
in the past years to create new means of data representation that overcome these
limitations. SRN are a class of fully connected, often shallow neural networks that
encode continuous signals of arbitrary dimension. For example, let F be a multi
parameter field that maps to each point in a given domain a set of D parameters. SRN
implicitly encode F as a neural network f comprised of multiple fully-connected layers.
Usually, the network takes a spatial domain position p as input and predicts the color or
density at that position in the original field: fΘ : R3 → RD. Neural scene representation
techniques are powerful and widely applicable to problems in visual computing and
beyond. They provide the ability to directly reconstruct individual samples of the
original data at any resolution, do not rely on specific structures of the underlying
data to function correctly, and can efficiently compress non-local coherence in the data.
Apart from the potential of SRN as an alternative signal storage format, they are also
widely used in related areas of computer vision, such as novel view synthesis and
few-shot scene reconstruction, object manipulation and interpolation, compression or
robotics.

27

3. Related Work

Early work in the domain of signal reconstruction focuses on encoding the underlying
data as an implicit function that is implemented as a fully connected deep neural
network. In this manner DeepSDF by Parket et al. [Par+19] and IM-NET by Chen and
Zhang [CZ19] present a method for extracting features from a surface geometry that
represents the original surface by its continuous signed distance function. At rendering
time the network is then fed with spatial positions p and tasked with predicting the
SDF value at position p, so that the original surface can be extracted as an iso-surface
at arbitrary resolution. Apart from signal representation, the networks also provide
the ability to interpolate or complete a signal from partial or noisy data. This is done
by concatenating p with a latent code vector z that encodes the desired shape of the
represented surface. While IM-NET uses an encoder-decoder structure for training and
inference, DeepSDF employs an auto-decoder architecture that consists of a set of neural
network layers. Contrary to the encoder-decoder structure, where a descriptive latent
feature vector is calculated from an encoder network, the auto-decoder initializes
random latent vectors for each data point at the beginning of training and optimizes
the latent vectors and decoder weights during training with back-propagation. The
resulting latent feature space can be interpolated and results in a model that can
represent a variety of different shapes with one training, by interpolating or switching
the optimized latent vectors. Shape completion can be achieved by fixing the decoder
weights during inference and optimizing the input latent feature code for the lowest
error in the learned latent feature space.

Alternatively, Occupancy Networks by Mescheder et al. [Mes+19] propose to rep-
resent 3D geometry as a learned occupancy function rather than an implicit signed
distance function. They argue that an efficient way to represent surface geometry would
be to learn a continuous three-dimensional occupancy function that predicts if the
surface exists at the queried points in space. An occupancy network is defined as a
deep neural network that takes spatial input position p and an observation x as input
outputs a real number between 0 and 1, which represents the probability of occupancy
of the surface at point p.

Acorn by Martel et al. [Mar+21] builds upon the occupancy-networks by introduc-
ing adaptive data structures that can be optimized during training to allocate more
resources in areas of fine detail and great interest. They reason that conventional data
display formats are not capable of displaying scenes with high resolution or large
scenes with thousands of polygons. While explicit data representation formats are
fast to evaluate, they also require storing a large number of explicit features and thus
scale poorly with data resolution or complexity in regard to memory requirements.
Implicit data representations in the form of learned neural networks are more memory
efficient, but struggle to find applications in real-time systems, since their representa-
tion accuracy is often related to their internal network complexity and thus require

28

3. Related Work

large and slow forward passes for data evaluation. Martel et al. tackle this problem
by suggesting a two-stage network design. In the first stage, a large encoder network
divides the domain of the input signal into a multiscale data structure, similar to an
octree. The data structure represents a local feature grid of the input data, where
regions of interest are represented with a higher resolution. In the second stage, spatial
positions are passed to a smaller decoder network for evaluation, which interpolates the
feature grid at the given positions and outputs an occupancy value. Since the majority
of the network parameters reside in the encoder network and the decoder network
consists of only a small fully connected model, the Acorn architecture significantly
reduces the computational effort required to evaluate the underlying data. Only a
single large forward pass is required to build the adaptive feature grid and subsequent
data evaluation is handled with fast forward passes of the small decoder network.

Müller et al. [Mül+22] extend on the idea of adaptive data structures with spatial
hashing. They reason that the use of a multiresolution hash-encoding of the encoded
signal’s feature space can lead to an efficient, widely applicable and easily parel-
lelizable representation, in contrast to the more task-specific data structures used in
Acorn [Mar+21] or by Takikawa et al. [Tak+21]. The hash-encoding uses a feature
space that is arranged into grids of different levels, with each level containing multiple
feature vectors. The grids of each level are independent to one another and store feature
vectors at the vertices of each grid. The feature vectors themselves are stored in an
array for each layer, and a hashing function performs the mapping of each grid point
to its representative array entry. At coarse resolutions, there are a similar number
of grid points and available array entries, so the hashing function performs a simple
1:1 mapping. At finer resolutions, the number of grid points exceeds the number of
available entries in the feature vector array and the array is treated as a hash table to
resolve collisions. During training, the network learns to favor the feature vectors with
the greatest relevance to the training loss, and is automatically incentivised to represent
areas at different resolutions with their most important details. During data evaluation,
a spatial input position p is fed into the network and assessed at L resolution levels.
The surrounding grid points at each level are then calculated and the corresponding
feature vectors are looked up by the hash function. Subsequently, the resulting feature
vectors are interpolated according to the relative position of p in the grid for each level.
Lastly, the interpolated feature vector is concatenated and passed to a small network
that reconstructs the original data.

In a different way, NeRF [Mil+20] extends the idea of simply reconstructing learned
geometries by proposing a method for generating novel views from 2D input images
without the help of additional latent feature information. This is done by combining
direct volume rendering with a neural network to represent static scenes as a learned

29

3. Related Work

5D function
fΘ(p, v) → (c, σ) (3.1)

where p = (x, y, z) represents an in-scene position, v = (v1, v2) represents the viewing
direction, c = (r, g, b) represents the radiance and σ represents the density. The network
is split into two stages. In the first stage a fully connected network converts the input p
into a prediction for σ and a high-dimensional feature vector. In the second stage this
feature vector is then concatenated with the viewing direction v and fed into a second
network that predicts the output radiance c.

In order to generate novel views, rays r(t) are traced through each pixel of the
to-be-synthesized image and the network is probed along the rays. Direct volume
rendering techniques are then used to combine the generated density and radiation
values of the network into photorealistic colors C(r) of the new image. The network
is trained on a set of 2D input images with known camera poses that are used for
optimization by minimizing the square error between the predicted color C(r) and the
ground truth Cgt(r) (See Figure 3.1).

The high visual accuracy as well as the easy-to-implement formulation of NeRF has
since inspired a large collection of follow-on work focused on further extending the
quality and real-time capabilities of NeRF. Improvements include enabling NeRF to be
trained from fewer input views ([Den+22], [Yu+21], [Che+21]) or significantly speeding
up the rendering process of the network ([Den+22], [Gar+21]).

3.1.1. Compressive Scene Representation Networks

This work is primarily interested in the capabilities of learning-based compression
algorithms on scientific volumetric data. Unlike the memory required for discrete
parameterizations (such as 3D meshes, point clouds, or voxel grids) which scale poorly
with larger resolution, the memory required for neural scene representations instead
scales with the complexity of the network, i.e., with the number of parameters required.

A closely related approach to such data compression is spatial upsampling. In the
context of neural networks, upsampling (Super-resolution) are techniques that aim to
enhance the image, video, or volumetric data resolution from initial low-resolution
data with the help of predictive deep neural networks. Since only the trained network
model and the low-resolution data need to be stored for complete data recovery, this
method brings the immediate advantage of saving storage space by reducing data. In
addition, super-resolution methods provide the ability to approach the underlying data
at different levels of detail, which greatly decreases computational complexity if the
computational task allows for a tolerable error.

30

3. Related Work

Zhou et al. [Zho+17] realise the potential of SRN for volume upscaling and propose
a network that directly learns a continuous mapping from low-resolution blocks to
high-resolution volumes. Wurster et al. [Wur+21] extend this work by combining
Super-resolution neural networks with the resource efficiency of hierarchical data
formats. Their approach adds flexibility to upscale input data with arbitrary levels of
detail, while minimizing scaling artifacts. Upsampling is done by creating a network
architecture that takes volumetric data represented by an octree data structure as input
and outputs a corresponding high-resolution uniform grid. The architecture consists of
a hierarchy of neural networks, where each network in the hierarchy is responsible for
upscaling one level of detail to the next resolution. Artifacts are avoided by performing
upsampling for the entire data area instead of separately upscaling individual data
sections with different levels of detail.

While super-resolution techniques can achieve good compression ratios by regener-
ating high-resolution data from sufficiently down-sampled low-resolution data, these
methods are not specifically designed for compression and may be outperformed in
compression ratio and real-time applicability by alternative compressive networks that
implicitly represent the input signal and are able to exploit non-local coherence in the
data.

TINC by Yang et al [Yan+22] leverages a hierarchical parameter sharing mechanism
to achieve remarkable compression results even for large scene data. They propose
to divide an input scene into local regions by octree partitioning, which can then
be compactly represented by implicit networks. The individual networks are then
organized in a tree structure and share their features in a hierarchical manner according
to the spatial distance of their encoded region. The hierarchical tree structure of the
neural networks allows higher-level nodes to extract increasingly global information
from their lower-level nodes, while providing a detailed but compressed representation
of input data through the parameter sharing method.

Although the use of adaptive data structures achieve considerable results in the
domain of data representation and data compression, the use of these structures
assumes the base data to have large regions of low frequency details, that can be
efficiently represented by the adaptive resolutions of the encoding data structure.

This work aims to analyze and improve implicit compression techniques that make
no assumptions about the structure of the original data and excel at data compression
tasks by capturing both global and local features of the input data, thereby succeeding
for a wide range of use cases. In particular, studies in this thesis are interested in the
following two network architectures:

• Neurcomp by Lu et al. [Lu+21] proposes a compression scheme based on over-
fitting a deep neural network directly to arbitrary scalar input data. By limiting

31

3. Related Work

the amount of available parameters to less than the original data size, the net-
work itself functions as an implicit compressed version of the data. As a result,
only the parameters and architecture of the learned network have to be stored,
instead of the original data. The original work additionally employs quantization
techniques to further compress the network parameters, thus creating a learning
based compression technique that achieves remarkable compression ratios while
still preserving important features of the input volume. This study explores the
potential of using pruning techniques on the network parameters to enhance
compression by sparsifying the network parameters prior to quantization.

• In contrast, fv-SRN by Weiss et al. [WHW22] trains a small network similar
to NeRF but extended with a low-dimensional latent code vector to represent
the original data. The small size of the network makes it possible to load all
network parameters into the shared memory space of a GPU, thereby enabling the
efficient use of GPU tensor cores and on-chip raytracing kernels to significantly
speeding up the reconstruction task. Since most of the memory requirements are
concentrated on the latent code grid, this thesis aims to find efficient methods to
compress the grid further using pruning algorithms and wavelet transformations.

(x, y, z),
(v_1,v_2)

(RGBo)

(RGBo) Loss

Figure 3.1.: The NeRF rendering process. The algorithm shoots rays through each pixel
of the final image and evaluates the network along the rays. The generated
color and opacity values are then combined in order to render the final
image. Adapted from [Gao+22].

3.2. Compression of Deep Neural Networks

Modern neural networks, as discussed in section 2.4, depend on deep architectures
consisting of millions of parameters in order to achieve high prediction accuracy, and

32

3. Related Work

thus require efficient compression techniques for usage in small, portable systems
or real-time applications. Most modern neural network compression algorithms can
be generalized into four categories [Che+17]: low-rank factorization, transferred/compact
convolutional filters,knowledge distillation and parameter pruning and quantization.

Low-rank factorization based techniques use matrix or tensor decomposition to
estimate the most informative parameters of the neural network. Algorithms that
use this approach are TTHRESH [BLP19] and Wavelet Decomposition, described in
subsection 2.2.1 and subsection 2.2.3. Work by Sainath et al. [Sai+13] apply this concept
specifically on deep neural networks and use a low-rank matrix factorization on the
weight matrix of the final layer of the neural network. They assume that the last
layer represents a low-rank weight matrix that can be factorized to be represented by
two smaller matrices, thereby reducing the number of parameters prior to training.
Although low-rank factorization is a straightforward method that yields good results in
model compression and acceleration, the associated decomposition operations are often
computationally intensive and require specialized hardware for effective use. Moreover,
these approaches require that the underlying data admit a low-rank decomposition in
the first place, e.g., by consisting largely of low frequencies in the case of Fourier bases.

Next, transferred/compact convolutional filter based approaches design special
structural convolutional filters to reduce the parameter space and save memory and
computational cost. GhostNet by Han et al. [Han+20] leverage this idea by proposing
a method that exploits existing redundancy in intermediate feature maps of a CNN
and thus reduces the required resources. Instead of applying large and computa-
tionally intensive convolutional filters to the underlying data to extract the required
feature maps, they propose to use a set of smaller intrinsic feature maps that can be
linearly transformed to produce larger and more powerful feature maps. While these
transform-based parameter sharing techniques work well for large architectures with
wide filters, they do not yet see success in thinner model architectures and are restricted
to convolutional neural networks.

Alternatively, knowledge distillation based methods first learn a large model and
subsequently train a more compact neural network to reproduce the output of the larger
network in a student-teacher relationship. Work by Hinton et al. [HVD15] and Fitnets
by Romero et al. [Rom+14] are examples of this technique. They propose to train thin
and deep neural networks to compress more complex but shallower networks. The thin
compressive networks are trained by following a student-teacher paradigm, in which
the student is penalized according to the complex teacher’s output and learns to mimic
the feature maps of the teacher. Even though the concept of knowledge distillation is
interesting and succeeds in reducing the computational cost and memory requirements
of deeper models, they have the disadvantage that they can only be applied to tasks
described with a softmax loss function and generally produce less competitive results

33

3. Related Work

compared to other compression methods.
On another hand, quantization approaches (as described in subsection 2.2.2) com-

press an original network by reducing the number of bits required to represent each
parameter. A straightforward approach is used by Gong et al. [Gon+14], as well as
Neurcomp [Lu+21], who use k-means clustering to quantize the network weights.
Other know works that effectively use quantization include Deep Compression by Han
et al. [HMD15], who use codebooks to quantize network parameters into bins that are
described by their bin-centroids and subsequently refine the codebooks and centroids
to best reconstruct the original data. All in all, quantization is an easy-to-implement
solution that is often combined with other algorithms for additional data compression.

Lastly, parameter pruning and dropout based methods examine the redundancy in
the model parameters and attempt to remove the redundant and non-critical parameters.
This can either be done by introducing metrics that observe the network during training
or probing the network parameters after the learning task has finished.

This work primarily analyzes the impact of pruning on the compressibility of neural
networks. Pruning is effective and has been proven to work for a wide variety of
network architectures [Bla+20], while also making no assumptions about network struc-
ture, and being relatively easy to implement for an already given network architecture.
The following section provides a broader overview of the topic of neural network
pruning.

3.2.1. Neural Network Pruning

A pruning algorithm aims to prune redundant, non-informative parameters in a DNN
model. Pruning can be used to achieve many different goals, such as reducing the
storage footprint or the computational complexity of inference for a neural network.

Examples of popular pruning algorithms include grouping parameters into hash
buckets for parameter sharing [Che+15], as well as deep compression [HMD15], which
prunes insignificant parameter connections after training, together with parameter
quantization and Huffman encoding to compress the neural network. There is also
growing research interest in training compact DNN with sparsity constraints, so that
the network is already pruned during the learning process. One way to achieve sparsity
during training is to enrich the loss term with l0 or l1 regularizers, thereby allowing
the optimization problem to converge to a sparse solution [LL16]. A popular form of
pruning with the explicit goal of network compression while preserving prediction
quality is targeted pruning [Gom+19]. In this dropout method neurons are adaptively
selected according to a parameter ranking to drop out in such a way that the network
adapts to the neuronal pruning, allowing it to be significantly reduced in size without
much loss of accuracy. Smallify by Leclerc et al. [Lec+18] leverages this approach

34

3. Related Work

by introducing a Switch Layer that simultaneously optimizes network size and model
performance with structured pruning during training.

Apart from network weights and biases, Rho et al. [Rho+22] propose to extend
pruning methods to networks that leverage latent feature grids in combination with
fully connected neural networks. They employ an element-wise binary mask to increase
the amount of zero-elements in the grid. The mask is optimized along with the network
and grid parameters to learn an appropriate dropout probability for each grid element
that zeroes out the majority of the grid coefficients without significantly decreasing the
prediction accuracy of the network architecture.

Generally, pruning layers can be considered as one of two types: Pruning methods
that prune individual parameters of the network weight matrices are labeled as un-
structured pruning, while algorithms that prune parameters in groups to remove entire
neurons from the model are termed structured pruning (See Figure 3.2). Employing un-
structured pruning results in a sparse network with a smaller parameter count, but the
resulting sparse weight matrices may not be exploited for speedup or smaller memory
footprint by modern hardware. Structured pruning, on the other hand, removes entire
neurons or channels from the network, which reduces the overall size of the weight
matrices in the network, and can thus be utilized by hardware and software for dense
computations.

Regardless of the goal, pruning is a tradeoff between model efficiency and quality,
where pruning increases model efficiency while quality decreases.

Rather than using deterministic learnable layers to prune portions of the network,
recent research has found success in basing pruning algorithms on probabilistic dropout
layers. Dropout was introduced in 2012 as a technique to avoid overfitting. The high
number of parameters in DNN makes them particularly susceptible to overfitting, since
their high number of parameters teaches them to accurately represent training data
but not to predict arbitrary test data. The original standard dropout method [Hin+12]
omitted each neuron in a neural network with a probability of 0.5 at each training
iteration, whereas testing included all neurons. This technique has been shown to
significantly improve test accuracy because the network cannot access the full range of
its parameters during training and is therefore averse to specializing only in training
data. Mathematically, the output during training for the original standard dropout can
be described by:

y = ϕ(Wx) · m, mi ∼ Bernoulli(1 − p) (3.2)

where y is the layer output, ϕ(·) is the activation function, W is the layer weight
matrix, x is the layer input and m is the layer dropout mask with each mi being 0 with
probability p [LSV19]. After training the neuron outputs are multiplied with their

35

3. Related Work

respective dropout masks and the full network is used:

y = (1 − p) · ϕ(Wx) (3.3)

Follow up work by Srivastava et al. [Sri+14] shows that the behaviour of the standard
dropout mask generated from a Bernoulli-distribution can also be replicated using a
continuous distribution with the same expectation and variance. As such, multiplying
neural network layers with discrete Bernoulli-noise is equal as multiplying the layers
with noise generated by, for example, a Gaussian distribution N (1, α = 1

1−p). Fast
Dropout (Gaussian Dropout) by Wang and Manning [WM13] complements this approach
and shows that the output of a layer that has undergone dropout can be computed
directly by sampling from a representative Gaussian distribution. This scheme al-
lows for significantly faster training than the standard dropout, since the sampling
of the approximative Gaussian distribution eliminates the need for complex matrix
multiplications of the network weights.

Although dropout methods were originally used to avoid overfitting, they are now
also researched for their sparsifying characteristics, which can be used to prune and
compress neural networks. According to Srivastava et al [Sri+14], standard dropout
promotes sparsity in neural network weights by increasing the proportion of weights
that are close to zero. As a result, dropout techniques can be used to compress neural
network models by lowering and pruning the number of network parameters required
for efficient operation.

Popular dropout algorithms include Ising-dropout by Salehinejad and Valaee [SV19],
which applies a graphical Ising-model to a neural network to detect and drop the least
useful neurons. Ising-models are widely used in statistical physics and connect a set of
points in an n-dimensional periodic lattice, where each node of the lattice is assigned a
binary Ising-weight (either +1 or −1). Two nodes are considered aligned, if they both
have the same weight, and misaligned, if the weights differ. The system in the Ising
model tries to reach a state in which as many nodes as possible form an aligned state.
Salehinejad and Valaee try to solve the dropout optimization by mapping the activation
values of the neurons to the Ising-weights in an Ising-model and use an optimizer to
solve the weights in such a way that the cost of binary connections is minimized.

In addition to optimizing prediction accuracy for the complexity of a given network,
dropout algorithms can also be used to generate reliable confidence intervals for
network predictions. Monte Carlo dropout [Gal+16] has been introduced as an easy
to implement, analogous method to produce model uncertainty estimates. This is
achieved by performing a grid search on the dropout rate hyperparameter. Specifically,
the network is run a number of times with standard dropout, each time with the same
input and with a different randomly generated dropout mask. Each trained network
can now be treated as a Monte Carlo sample, from which a Bayesian approximation

36

3. Related Work

of the model space and uncertainty can be calculated. While knowledge about the
certainty of a model’s output is useful (e.g., for judging if a model has overfitted to its
training data), the use of a grid search is often unfeasible for large, deeper models.

As an alternative stochastic method, Variational dropout has been shown to sparsify
both fully connected and convolutional layers [MAV17], [KSW15]. Variational dropout
uses a Bayesian approach similar to the Gaussian multiplicative noise presented by
Srivastava et al. [Sri+14]. This method imposes a sparsity inducing prior distribution
over the network weights and uses variational inference to infer an approximate poste-
rior distribution for prediction instead of only point estimates. The derived adaptive
dropout scheme does not treat the dropout probability p as a hyperparameter, but
can automatically optimize an effective dropout probability for an entire network,
individual layers or neurons. By combining dropout with a Bayesian approach, this
algorithm is able to detect neurons with a high degree of uncertainty in the network,
and is effectively able to prune them. The method outperforms the standard dropout
scheme and achieves a large reduction in the number of parameters while minimally
affecting performance. A follow up work by Neklyudovet al. [Nek+17] uses a modified
variational dropout scheme that promotes structured sparsity, which specifically benefits
the compression approach of variational dropout. This first wave of research assumes
the approximate priors to follow fully factorized distributions that resemble gaussian
kernels, which in turn benefits computational tractability and several optimizations
with stochastic gradient-based methods for training. However, work by Nguyen et
al. [Ngu+21] and Hron et al. [HMG18] demonstrates that this prior disregards the
strong statistical dependencies among random weights of neural nets, making it im-
possible to capture the whole structure of the true posterior and to estimate the true
model uncertainty. To get around the restriction of improper priors and ill-posed true
posteriors many recent works in the field of variational dropout propose to employ pos-
terior approximations with richer expressiveness. Work by Louizos and Welling [LW16]
approximates the true posterior based on the parameterization of a matrix variate
Gaussian distribution as a distribution over random matrices. Rather than treating each
entry of a weight matrix independently, this approach considers the matrix as a whole,
introducing correlations and information sharing between weights that allow for easier
estimation of the true posterior value. Other research employs low-rank approximation
techniques for representing the Gaussian posterior (Tomczak et al. [TST20]) or uses a
prior hierarchy to obtain a joint approximation for the Dropout posterior (Nguyen et
al. [Ngu+21]).

This thesis is interested in improving existing compressive Scene Representation
Networks using sparsity inducing pruning and dropout algorithms. To this end the
behaviour and compression quality of a selection of different pruning algorithms are

37

3. Related Work

compared. First, a binary mask trained with a straight through estimator as a basis for
comparison with more sophisticated pruning methods is examined. For more advanced
pruning methods Smallify is studied as a representative for deterministic, targeted
pruning, which uses trainable beta-masks together with an advanced dropout criterion
to learn optimal network sizes during training. Finally, the basic implementation
of variational dropout proposed by Molchanov et al. [MAV17] and Neklyudov et
al. [Nek+17] is examined as a relatively easy to implement representative for the
Bayesian dropout approaches, which shine in their adaptive handling of the dropout
rates for each network layer.

Unstructurred Pruning Structured Pruning

Figure 3.2.: Example of a DNN that has been pruned unstructured (left) and structured
(right). The fading nodes and connections are pruned. While unstructured
pruning only culls singular weight connections between the neurons, struc-
tured pruning removes whole neurons and all associated weights from the
network.

38

4. Implementation Details

The goal of this thesis is to investigate the effects of different pruning methods
on different types of compressive scene representation networks. A listing of all
used hyperparameters is presented in Table 4.1. Code for the implemented meth-
ods is provided on https://github.com/Bussler/NeurcompCompression and https:
//github.com/Bussler/Latent_Feature_Grid_Compression. In this chapter, the con-
cretely implemented methods are discussed in more detail.

4.1. Neurcomp

Initial experiments investigate the influence of pruning techniques on large fully
connected scene representation networks. The base network architecture without
additional pruning layers is implemented according to the state-of-the art architecture
of Neurcomp by Lu et al. [Lu+21]. As described in subsection 2.3.1, Neurcomp is a
neural network that implicitly represents and compresses voluminous input scene data.
The network architecture is implemented in a broad and dynamic way to allow the user
to easily evaluate many different architectures. In this context, the network architecture
is also not specified to necessarily include residual blocks, but offers to investigate
the effects of pruning algorithms on the compression ratio and prediction accuracy
of Neurcomp with and without residual blocks. In case the residual blocks are used
in the network architecture, the layer formulation in Equation 2.4 is replaced by the
formulation in Equation 2.5.

Following the approach of Neurcomp, data compression is obtained by limiting the
total amount of parameters m in the network to be smaller than the resolution C of
the original represented data. This is achieved in one of two ways: Either the user can
specify the desired number of layers and the compression ratio, and the size of the
hidden layers will be calculated automatically, or the user must specify the number of
layers and the layer size, which will dictate the compression ratio. In any case, given
a dataset of dimensionality d, the final network fΘ consists of a set of SIREN layers
and a final layer without activation function. The first layer has a weight matrix of size
k · d, the weight matrices of the hidden layers are of size k · k and the last layer is of
size k · 1. The size of the bias vectors are derived in a similar way. Training is done
by randomly sampling from the given data set and feeding the data into the network.

39

https://github.com/Bussler/NeurcompCompression
https://github.com/Bussler/Latent_Feature_Grid_Compression
https://github.com/Bussler/Latent_Feature_Grid_Compression

4. Implementation Details

Neurcomp FV-SRN

Parameters • layer amount • layer amount

• layer size • layer size

• maximum passes • grid size

• learning rate • feature size

• gradient loss weighting • maximum passes

• learning rate decay • learning rate

• batch size • learning rate decay

• batch size

• embedding type

• wavelet filter

(a)

Binary Mask Smallify Variational Dropout

• pruning loss weighting • pruning loss weighting • psigma

• weight loss weighting • weight loss weighting • DKL ramp up

• pruning threshold • pruning threshold • weight loss weighting

• EMA momentum • Entropy weighting

• pruning threshold

• initial droprate

(b)

Table 4.1.: Listing of available hyperparameters for (a) the examined network architec-
tures and (b) the pruning algorithms.

40

4. Implementation Details

Network parameters are optimized with the ADAM [KB14] algorithm, which the user
can influence by specifying an initial learning rate or adjusting a learning rate strategy.

4.1.1. Pruning Methods

This section explores the implementation of the pruning methods Smallify (see sub-
section 2.4.2) and variational dropout (see subsection 2.4.3) in conjunction with the
implemented Neurcomp architecture. The goal of adding additional the pruning meth-
ods on top of Neurcomp is to identify and remove neurons with small influence to the
final prediction accuracy from the network, thereby optimizing the quality-compression
ratio of the model.

When residual blocks are added to the Neurcomp architecture, the pruning layers
are added to the middle layer of the residual block, since the inputs and outputs of the
blocks have to be the same size, in order for the concatenation of new and older features
to work correctly. In case the residual blocks are left out of the network architecture, the
pruning layers can be added after each layer. This approach enables broader pruning
of the network, but at the cost of reduced prediction accuracy due to the additional
pruning and loss of residual block stability.

The Smallify and variational dropout layers are trained simultaneously with the basic
network. After training the introduced pruning layers are culled from the network, in
order to not influence the total parameter count and compression ratio. To account
for the dropout effect during training, the layer weights are multiplied with their
corresponding pruning layers for inference. Depending on the specific pruning strategy,
the insignificant neurons of the network layers are identified and pruned as well,
resulting in smaller, dense weight matrices in the network.

In order to further increase the reconstruction accuracy of the network, a finetuning
strategy is employed. To this end the maximal amount of training passes over the
training data is divided. Two thirds of the passes are used for simultaneous training
of the network and the pruning layers. After the training has concluded, the pruning
layers and insignificant neurons are culled and the last one third of passes are used to
allow the network to become familiar with its pruned state.

Smallify

The implementation of Smallify is based on the pruning algorithm proposed by Leclerc
et al. [Lec+18] as described in subsection 2.4.2.

Given a layer in the network with output size c, the method is added to the base
network in the form of a switch layer that monitors a vector of β = [β1, . . . , βc]

parameters. The layer takes the activations of a previous layer as input and multiplies

41

4. Implementation Details

each neuron output by a parameter βi ∈ [0, 1]. Neurons with a beta value of 0 do not
contribute to the reconstruction effort of the network and can be effectively removed,
thereby reducing the network size. In contrast to the algorithm suggested by Leclerc
et al. pruning of the network parameters is performed only after the training is
completed. This is based on the goal to allow the network to reactivate previously
deactivated neurons in the event that they exert a noteworthy influence on the network’s
performance, rather than prioritizing enhancements in training time and complexity
by immediately discarding neurons. For pruning of the insignificant neurons, sign
variance strategy as described in subsection 2.4.2 is used and neurons whose variance
exceeds a predefined threshold are removed from the network. The strategy is realized
by sign variance tracker that observes the β values and calculates and manages the
exponential moving average and variance. The exponentially weighted moving variance
and standard deviation are calculated with the help of an incremental online algorithm
by Finch [Fin09]:

δi = xi − EMAi−1

incr = α · δi

EMAi = EMAi−1 + incr

EMAVari = (1 − α) · (EMAVari−1 + δi · incr)

(4.1)

, where α is the sign variance momentum and xi ∈ [−1, 1] is a new observed sign of a
βi.

Variational Dropout

Variational dropout is implemented as an adaptive bayesian dropout scheme that offers
to learn specific dropout rates for each layer, as described in subsection 2.4.3.

Assuming a variational dropout layer is applied to a layer with output size k × l, the
implemented dropout layer manages the two parameter vectors log(θ) and log(σ) of
size l × 1. The log(θ) parameter are initialized to 0 and the log(σ) are initialized to
reflect a specified initial droprate. Logarithmic scaling of the σ and θ parameters is used
in the implementation. This decision is founded int he observation that the log scaling
guarantees that σ > 0 and θ > 0, which enhances the numerical stability of calculating
the α values, and a logarithmic scale is used anyway for the calculation of the DKL

(see Equation 2.20). The forward pass of the dropout layer is performed according
to Equation 2.13 and Equation 2.16. Thus, the parameters log(σ) and and log(θ) are
designated as the variational parameters of this implementation, which are optimized by
the dropout layers during training. log(σ) through exp(2 · log(σ)) = σ2 = α · θ2 encodes
the variance, while log(θ) describes the mean value of the applied multiplicative noise

42

4. Implementation Details

distribution. From these parameters, the multiplicative noise for each dropout layer
can then be calculated, as well as α = exp(log(σ)− 2 · log(θ)) = σ2/θ2 and droprate
p = α

1+α , which are in turn used for pruning of the network.
During training, separate variational noise for each dropout layer and input are

generated, with the aim to reduce gradient variance as much as possible by sampling
and normalizing over sufficiently large batches. The implementation in this work
omits simplification and optimization techniques such as the local reparametrization
trick [KSW15] for a more straightforward implementation.

The scaling λD of the DKL are initialized close to 0 and increase during training
to make sure that the DKL gets weighted more over time. In this way, the network
can train first the reconstruction accuracy and then the sparsity of the neurons when
the network already has a good idea of the input data. Together with the finetuning
strategy, this procedure results in a higher accuracy to compression rate ratio than
brutally pruning all neurons from the beginning.

As discussed in subsection 2.4.3, the log likelyhood, and thereby the training pro-
cedure can be influenced by the psigma parameter. Two different ways to obtain this
parameter are analyzed: First, by treating it as hyperparameter and fixing it for the
whole network and training (further referred to as static variational dropout), or second,
by using a different network to dynamically predict psigma for each spatial position
(hereafter referred to as dynamic variational dropout).

Finally, it is important to note that the compressive capabilities of variational dropout
rely on the ability to converge the dropout rates of individual neurons to either 0 or
1. Neurons with dropout rates of 1 then transmit largely random feature information
and can be pruned without affecting the predictive accuracy of the network. In order
to further enhance the compression quality of variational dropout, minimizing the
variance of dropout rates in the layers is thus desirable. To regulate the randomness
and disorder in the dropout distributions of variational dropout layers, an additional
entropy loss is introduced to the network optimization process. Given a dropout layer
with n input neurons and corresponding drop rates pi, the Entropy H is defined as

H = ∑
i

pi · log(pi) + (1 − pi) · log(1 − pi) (4.2)

where H is to be minimized for each drop layer.

4.2. fv-SRN

In the second approach, fully connected layers are combined with a latent feature grid
to implicitly represent the input data, as proposed in fv-SRN by Weiss et al. [WHW22]
(see subsection 2.3.2).

43

4. Implementation Details

In this case the latent feature grid holds feature vectors and thus high level informa-
tion about the encoded data at vertices of a grid. Since most parameters are stored in a
grid instead of a fully connected network, this approach enables faster training and
inference of the implicit representation than the previous Smallify-based approach. The
goal of this thesis is to use pruning algorithms to prune the grid parameters so that the
network automatically learns the best feature grid size for an optimal tradeoff between
quality and compression, regardless of the user’s knowledge.

With the goal of increasing the parameter sparsity, compactness and efficiency of the
grid, fv-SRN is extended and feature grid is transformed and encoded in the frequency
domain. By applying frequency transformations, a majority of the energy from the
original signal is concentrated into a small number of coefficients. This allows prun-
ing methods to sparsify large parts of the frequency coefficients without significantly
impacting reconstruction quality, thereby resulting in more compact representations
than when handling spatial grid coefficients. In this thesis the discrete wavelet de-
composition (see subsection 2.2.3) is used to encode the feature grid. The efficiency of
wavelet representation in capturing both local and global feature information has been
shown in several high-performance standard codecs (e.g. JPEG2000 [TM02] or Rho et
al. [Rho+22]), and therefore provides a good encoding format when pruning methods
are to be used to maximize the sparsification of grid features.

To create an fv-SRN instance, the user specifies the encoding data set, an initial grid
size and feature dimension, as well as the size and complexity of the fully connected
predictor network. Other hyperparameters, such as the choice of embedding function,
the type of wavelet decomposition or the learning rate can also be adjusted. Given a
dataset X generating samples of size d, an embedding function of output size e and a
latent feature grid with l features at each vertex, the predicting network consists of an
input layer of size c · k with c = d + e + l, an output layer with size k · 1 and hidden
layers with size k · k. For the neural network training, the user specifies a set amount
of passes over the network and the spatial domain of the original dataset is sampled
at random positions p to be fed into the network. When accessing the latent feature
space, the feature grid is first reconstructed into a spatial representation from the stored
wavelet coefficients and interpolated at pi. Network parameters are again optimized by
ADAM [KB14], which the user can influence by specifying or adjusting a learning rate
strategy.

4.2.1. Pruning Methods

Contrary to the pruning techniques described in the Neurcomp-based network, the
objective for fv-SRN is to introduce pruning layers to the latent feature grid instead of
the network layers. This is motivated by the fact that a significant proportion of the

44

4. Implementation Details

network parameters are situated in the grid, and pruning is intended to optimize the
compressiveness of fv-SRN by limiting the grid size while considering the prediction
accuracy of the network.

During wavelet decomposition of the feature grid, the wavelet coefficients are split
into multiple grids for each decomposition level, which are each observed by a pruning
layer. In this way, the pruning algorithm learns which feature vectors at which positions
are significant to the reconstruction effort and omits the insignificant ones. Similar to
the Neurcomp method, the pruning layers are trained simultaneously with the rest of
the network. The pruning layers are also multiplied with the corresponding wavelet
coefficients and then removed from the network after training. Additionally a binary
pruning mask is maintained for each network. The pruning mask encodes the original
structure of the grid as well as pruning information and is used for inference and
reconstructing the original feature grid from the pruned state.

Again finetuning is used to further increase the reconstruction accuracy of the
network, and the maximum number of training runs is split similar to Neurcomp.
Two thirds of the training capacity is used for training with pruning layers, while the
remaining one third is used after pruning to allow the network to readjust to its pruned
state.

Trainable Binary Mask

The simple binary pruning mask is implemented as described in subsection 2.4.1 and a
pruning layer is assigned to each level of the wavelet decomposition of the feature grid.

In this implementation of the method, each binary pruning layer is represented as an
element-wise binary mask that activates or deactivates feature elements of a previous
fully connected network layer. As described before, a stop-gradient operator is used
to ensure that no gradient is backpropagated along the pruning layer and incoming
gradients are passed directly to the next layer during network component optimization.
During training, the mask values M are cast to binarized masks and multiplied with
their corresponding input W from the previous layer. The resulting masked features
Wm are then used for further interpretation in the network:

mask = σ(M)

Wm = sg(W · (mask >= thresh)− W · mask) + (W · mask)
(4.3)

where sg denotes the stop gradient operator, σ represents the sigmoid function and
thresh a defined threshold value for the pruning function.

Given a level of the wavelet decomposition with a grid of the dimensionality (s, c3),
consisting of the amount of subbands s and the dimensionality of the grid at level c3,
each pruning layer administers a mask of size (s, c3). The pruning layers are accessed

45

4. Implementation Details

when decoding the spatial representation of the grid from the wavelet coefficients
and are represented as element-wise binary masks, that activate or deactivate feature
elements of the latent grid.

Smallify

The Smallify pruning layers are implemented similarly to the Neurcomp architecture
(see subsubsection 4.1.1), except that Smallify is used to prune the latent feature grid
rather than the layers of the network. In this manner, a pruning layer is assigned to each
level of the wavelet coefficients, which manages β values for each feature coefficient of
the feature grid.

Variational Dropout

The variational dropout layers are again implemented similarly as for the Neurcomp
architecture (see subsubsection 4.1.1). The same hyperparameters are used and only the
placement of the dropout layers is changed to work on the latent feature grid instead
of the fully connected network.

46

5. Experiments

In this chapter the quality of the simple binary masking pruning algorithm (see subsec-
tion 2.4.1), Smallify (see subsection 2.4.2) and variational dropout (see subsection 2.4.3)
applied to Neurcomp (see subsection 2.3.1) and fv-SRN (see subsection 2.3.2) are
assessed. In addition, the internal learning process of these pruning methods is stud-
ied and different approaches to optimize the network architectures for maximum
quality-compression gain in conjuncture with the pruning algorithms are evaluated.

5.1. Experiment Setup

The goal of this thesis is to investigate the influence of the various pruning algorithms
on the compression ratio and prediction quality of the Neurcomp and fv-SRN neural
networks. Specifically, the sparsifying properties of the pruning algorithms on both
networks are investigated. Therefore, to allow a better comparison between the two
network architectures, only the unquantized states between Neurcomp and fv-SRN
networks are compared, even though both approaches offer the possibility to quantize
the network architecture after training to achieve a better quality-compression ratio. To
make sure that the findings in this thesis are also applicable to the quantized states
of the networks, Figure A.1 compares pruning results for both networks prior and
post applied quantization. The figure indicates that the relations between baseline and
the pruned versions of the network do not change after quantization. This validates
examining the pruning effects on the networks in their unquantized states.

Experiments are performed on two 3D scalar data sets: a small turbulence data set of
size (150, 150, 150) and a larger pressure magnetic field (mhd_p) of size (255, 255, 255)
from a magneto-hydrodynamicisotropic turbulence simulation of the Johns Hopkins
Turbulence Database [Li+08]. All compression results of the neural networks can be
written out as vti files and visualized with appropriate volume rendering software,
such as paraview [Ahr+05]. Renderings of the mhd_p and turbulence data sets can be
found in Figure A.2.

To obtain the best possible deterministic results, first the number of iterations required
for convergence for each combination of data set and network is determined, and then
the number of iterations is set constant for each experiment. The number of iterations
is therefore set to 80 - 100 for Neurcomp, while the fv-SRN converges much faster

47

5. Experiments

with 40 - 60 iterations. In a similar manner, hyperparameter search is utilized to find
good constant values for batch- and sample size throughout all experiments. For the
fv-SRN, an empirical decision is made to use a Fourier feature embedding and the
Haar wavelet filter for all experiments. This is done to restrict the dimensionality of the
the search space for NAS and to obtain more consistent results. However, the majority
of hyperparameters, such as the learning rate, weighting terms for different losses,
parameters for the various pruning methods, and the overall architecture of the network,
such as the number and size of the network layers, are dynamically determined by the
AX NAS algorithm and elaborated on in more detail for each experiment.

For all experiments the Peak signal-to-noise ratio (PSNR) is used as a quality measure
for the accuracy of the network predictions and the compression ratio of the network to
the original data is utilized as a measure for the compressive capabilities of the network.
The PSNR for each network prediction is calculated from the computed mean square
error (MSE) between the original scene data and the entire implicitly reconstructed
scene. The compression ratio is derived from the difference between the amount of
parameters used in the original data and the implicit model.

5.2. Classical compression baseline

To assess the compressive capabilities of the base Neurcomp and fv-SRN networks
without pruning algorithms, both algorithms are compared against TTRHESH (see
subsection 2.2.1) as the selected state-of-the-art compression method without deep
learning. The use of TTHRESH as a baseline for classical, non-learning compression
algorithms is motivated by its high reconstruction accuracy and ability to compress
smoothly at dynamic target compression ratios. TTHRESH is able to surpass other
classical compression algorithms in regard to obtained reconstruction quality and is
used as a baseline in other recent studies [Lu+21], [WHW22], [HWW22].

First, the effect of quantization on the reconstruction quality and compression ratio
on Neurcomp is investigated. To this end, a comparison is made between the obtained
PSNR value when setting the compression rate and weighting the size of the network
against the permitted quantization accuracy. To find the best tradeoff between quanti-
zation compression and accuracy, Neurcomp is trained on both the turbulence volume
and the mhd_p data set. For each data set, two compression rates are selected and the
correct size of the network layers is calculated, to achieve the corresponding compres-
sion rate after quantization with different quantization accuracy. Figure A.1a visualizes
the findings for this experiment by depicting the allowed quantization accuracy in form
of the permitted storage bits for each network parameter on the x-axis, and the size of
each network layer on the y-axis. Each dot in the figure represents a compression of

48

5. Experiments

the original data set, where the opacity and size of the dot encodes the achieved PSNR.
Interestingly, both data sets show that the overall compression quality increases with
the allowed quantization precision, up to 8 bits per parameter. These findings suggests
that quantizing each network weight with 8 bits yields the best results, and thus these
settings are used for the following baseline comparison. For fv-SRN the specifications
from the original paper are adopted. As such the feature grid values are quantized
with 8 bits and the network parameters with 16 bits.

For comparing the Neurcomp and fv-SRN network with TTHRESH, the AX NAS
algorithm is employed to find the pareto frontier of both network architectures. The
batch size, sampling size, quantization accuracy for Neurcomp and fv-SRN, and choice
of wavelet transform are fixed, as is the choice of embedding function for fv-SRN. Then
the NAS algorithm is executed with each 80 search iterations and decides on the learning
rate, learning rate decay, number of network layers, size of network layers, and in the
case of fv-SRN the size of the feature grid for varying compression ratios. Figure 5.2
shows the results of this hyperparameter search by depicting the achieved compression
ratio on the x-axis, the PSNR as a quality measure on the y-axis, and the different
compression approaches as colored linear graphs. While the TTHRESH baseline is able
to outperform both neural networks in their unquantized representations, Neurcomp
and fv-SRN achieve superior results than TTHRESH when coupled with quantization of
the network parameters. Since compressive neural networks can outperform TTHRESH
as a state-of-the-art method for compressing scientific data, these results indicate that
further research and development in refining learning based compression approaches
is justified.

5.3. Pruning on Neurcomp

In this section, Smallify and variational dropout are explored as methods to improve
the compressive capabilities of Neurcomp. The key to this goal is to find the best
balance between using the pruning algorithms to remove neurons from the network,
while retaining most of the compression quality. To this end NAS is used to optimize
the choices for the network architecture (amount and size of hidden layers, learning
rates) and to get a good grasp of the influence of the hyperparameter of the pruning
methods. Figure 5.3 illustrates the results of this broad multi-objective optimization.
The figure plots and compares the pareto frontiers along PSNR and compression ratio
of the variational dropout and Smallify approach with the baseline of the unquantized,
unpruned Neurcomp architecture. For the variational dropout, the approach of stati-
cally defining the parameter psigma as a hyperparameter selected by the NAS (static
variational dropout) is compared with keeping psigma as a dynamic prediction of a

49

5. Experiments

(a) turbulence volume data set (b) mhd_p data set

Figure 5.1.: Comparing different combinations of quantization accuracy and network
complexity in regard to their reached PSNR (encoded in the albedo and
size of the dots). The final compression rate after network training and
compression is fixed, and the network complexity is altered according to the
permitted quantization precision. For both the mhd_p and the turbulence
data set, the best results are obtained with a quantization precision of 8
bits.

second, smaller network (dynamic variational dropout). The experiment is run with the
small turbulence volume data set and the larger mhd_p data set. Additionally, multiple
experiments are conducted for each pruning and baseline method for the turbulence
volume data set. This is done to get a better understanding of the variance between the
different runs and enable more sophisticated comparisons.

The compressive abilities of Neurcomp are not optimized from pruning on the
smaller turbulence volume data set (see Figure 5.3b). All pruning algorithms behave
relatively similar and are not able to surpass the unpruned baseline in regard to quality-
compression ratio. The considerable variance observed in the experiment runs can
be attributed to the vast high-dimensional search space of the network and pruning
hyperparameters that need to be evaluated by the NAS. Although the variance is not
large enough that a comparison between the pruning methods and the unpruned
baseline is not feasible, it must still be taken into account when evaluating the benefits
of the pruning methods.

Evaluation of the pruning methods on the mhd_p data set (see Figure 5.3a) shows
better results for the potential of pruning methods. On the larger data set all pruning
approaches are capable of outperforming the baseline, although only the static vari-

50

5. Experiments

0 100 200 300 400 500 600 700
35

40

45

50

55

Compression Rate

ps
nr

TTHRESH
fv-SRN
fv-SRN Quant
Neurcomp Quant 8 bits
Neurcomp no Quant

(a) Baseline for mhd_p data set

0 200 400 600

30

40

50

60

Compression Rate

ps
nr

TTHRESH
fv-SRN
fv-SRN Quant
Neurcomp Quant 8 bits
Neurcomp no Quant

(b) Baseline for turbulence data set

Figure 5.2.: Comparison of the TTHRESH, fv-SRN and Neurcomp (once without quan-
tization, once with quantization) in regards to their obtaines PSNR and
compression ratio on the mhd_p and turbulence data sets.

ational approach consistently surpasses the baseline by between 1 to 2 PSNR points.
Both Smallify and dynamic variational dropout algorithms demonstrate unstable per-
formance and can only marginally outperform the baseline by 0.5 to 1 PSNR points in
some cases. Due to the variance observed in the turbulence volume experiment, it is
inconclusive whether these pruning algorithms offer significant improvements over the
unpruned baseline.

A second experiment is initiated with the goal to generate a better comparison of the
pruning techniques. In order to better control the variance of the NAS algorithm, the
hyperparameter searchspace is scaled down and the Neurcomp network architecture is
set constant at a small compression ratio. Only the pruning hyperparameters are varied
to obtain increasing compression ratios on the mhd_p data set. Figure 5.4 displays the
compression results acquired by static variational dropout (Figure 5.4a) and Smallify
methods (Figure 5.4b) for comparison. Smallify is tested on two starting architectures,
one starting with a compression ratio of 100 and the other with 200. While the pruning
for the smaller network with the larger compression ratio performs a little bit better
overall, both struggle to surpass the unpruned network and follow the baseline when
tasked with pruning large chunks of the original network for larger compression ratios.
Interestingly, Smallify performs best when the original network is only slightly pruned,
increasing the prediction quality and compression ratio of the base network. Variational
dropout, on the other hand, underperforms for small compression ratios when tasked
to prune tiny parts of the network, but is able to outshine the baseline and Smallify for

51

5. Experiments

100 200 300 400 500 600

34

36

38

40

42

44

Compression_Ratio

PS
N

R

Smallify
Variational Dynamic
Variational Static
Baseline Unpruned

(a) mhd_p

0 100 200 300 400

30

40

50

60

Compression_Ratio

PS
N

R

Smallify
Var Dynamic
Var Static
Unpruned

(b) turbulence volume

Figure 5.3.: Comparison of prediction accuracy (PSNR) and compression ratio of varia-
tional dropout along with Smallify against the unpruned Neurcomp base-
line on the mhd_p and turbulence volume data set. All plots are generated
by employing NAS to search for optimal network and pruning hyperparam-
eters. Each experiment was repeated 3 times for the turbulence volume data
set to generate a better understanding of the variance in the data (faded
plots).

larger compression ratios and larger pruning amounts.

Hyperparameter Analysis

In order to understand the pruning behaviour of the different pruning methods,
the influence of various pruning hyperparameters on the compression process are
investigated. To this end, the Neurcomp architecture is set constant and NAS is used to
find the pareto frontier of the pruning algorithms in regard to PSNR and compression
ratio. Trends of the hyperparameters along the pareto frontier are then analyzed.
Figure 5.5 visualizes the results for this experiment by mapping various values of
the pruning hyperparameters on the x-axis against the final compression ratio on the
y-axis. Not all hyperparameters appear to have a meaningful effect on the overall
realized compression ratio, and many parameters seem to be either set to singular
values for multiple compression ratios or change their values seemingly at random.
The experiment is complicated by the considerable variance present in the NAS data,
due to the high dimensionality of the hyperparameter search space and the limited
sample size of the NAS algorithm. These circumstances make it a challenging task to

52

5. Experiments

100 200 300 400 500 600 700

36

38

40

42

44

46

Compression_Ratio

PS
N

R

Pruned Dynamic
Pruned Static
Baseline Unpruned

(a) Variational Dropout

200 400 600 800

34

36

38

40

42

44

Compression_Ratio

PS
N

R

Pruned Arch 200
Pruned Arch 100
Baseline Unpruned

(b) Smallify

Figure 5.4.: Comparing the obtained PSNR and compression ratio of Neurcomp when
enhanced with the Smallify or variational dropout algorithms. The network
hyperparameters are fixed for each plot and NAS is used to find the
optimal pruning hyperparameters with different amounts of pruning and
thus different compression ratios.

differentiate valid trends along the pareto frontier from noise values.
To this end, the most important hyperparameters for each pruning method can be

narrowed down by following and extracting the gradient of each plotted hyperparame-
ter function, where the parameters with the strongest gradient have the largest influence
on the pruning behaviour of the algorithm. It is found that the static variational dropout
is largely influenced by the choice of psigma, which controls the sensitivity of the log
likelyhood loss and the pruning theshold choice. According to the depicted function
in Figure 5.5a, a larger psigma corresponds to more aggressive pruning and a higher
compression ratio. In contrast, a larger pruning threshold corresponds to a decreased
final compression ratio.

Dynamic variational dropout, on the other hand, uses an intern neural network
to predict this hyperparameter and depends on the rate at which the DKL gains
importance for the overall optimization (see Figure 5.5b). Here, a faster ramp up of the
DKL influences a larger final compression.

Finally, Smallify appears to be dependent on both the weighting term for pruning
loss and weight loss (see Figure 5.5c). Increased weighting of the beta and weight loss
correspond to increased final compression.

From these findings simple rules can be generated that allow the user to select the
important hyperparameters corresponding to a chosen compression ratio or PSNR

53

5. Experiments

0 1 2 3
1e 5

200

400

600

800

Co
m

pr
es

sio
n

Ra
te

DKL Ramp Up

9.4 9.2 9.0 8.8

200

400

600

800

PSigma

0.2 0.4 0.6 0.8

200

400

600

800

Co
m

pr
es

sio
n

Ra
te

Initial Droprate

0.6 0.7 0.8 0.9

200

400

600

800

Pruning Threshold

(a) Static Var

0.00 0.02 0.04

100

200

300

400

500

600

Co
m

pr
es

sio
n

Ra
te

DKL Ramp Up

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.4

100

200

300

400

500

600

Co
m

pr
es

sio
n

Ra
te

Initial Droprate

0.65 0.70 0.75 0.80

100

200

300

400

500

600

Pruning Threshold

(b) Dynamic Var

0 2 4 6
1e 5

100

120

140

160

180

200

220

Co
m

pr
es

sio
n

Ra
te

Beta Loss Weighting

2 4 6 8
1e 7

100

120

140

160

180

200

220
Weight Loss Weighting

0.024 0.025 0.026
100

120

140

160

180

200

220

Co
m

pr
es

sio
n

Ra
te

Momentum

0.72 0.74 0.76 0.78
100

120

140

160

180

200

220
Pruning Threshold

(c) Smallify

Figure 5.5.: Comparison of hyperparameters of the corresponding pareto frontiers
for static and dynamic variational dropout, as well as Smallify. Each
hyperparameter is increased along the x-axis and mapped against the
resulting compression ratio on the y-axis.

54

5. Experiments

value for each pruning algorithm. The results of this task are depcited in Figure 5.6.
The problem is tackled with linear regression and a curve fitting algorithm is used to
generate simple functions that best fit the observed data points from Figure 5.5. For the
Smallify and variational dropout methods, all examined hyperparameters are positive.
Thus a log scaling of the parameters and compression ratio is applied to minimize the
influence of outliers and combat the noise in the data. Figure 5.6a visualizes the results
of this experiment for Smallify. According to the hyperparameter analysis, two curves
are fitted for the weighting of the beta and the weight loss. Both parameters can be
approximated by underlying linear functions, although the weighting term for weight
loss has less noise and can be better approximated.

Figure 5.6b depicts the fitted curves for the static variational dropout according
to psigma and the pruning threshold. Both hyperparameters fit well to the approx-
imated function, especially the psigma, indicating a stable relationship between the
hyperparameter and the pruning behaviour.

In Figure 5.6c the dynamic variational dropout is approximated by fitting a linear
function on the ramp up value of the DKL. While Smallify and the static variational
dropout were rather easy to fit to an approximate linear function, the dynamic vari-
ational dropout baseline seems to contain many outliers and is worse to fit than the
previous methods.

The quality of the predictor models is investigated by comparing the predicted theo-
retical compression results against real achieved compression ratios. To this end the
regressed functions from Figure 5.6 are used to generate choices for pruning hyperpa-
rameters that are used with Smallify, dynamic and static variational dropout to achieve
experimental runs with increasing compression ratios. Different Neurcomp models
are then trained with the varying hyperparameters according to the predictor model,
while all other hyperparameters are fixed between runs. Figure 5.7 visualizes this
experiment by comparing the predictor functions against the real achieved compression
ratios. While the results of both static variational dropout (Figure 5.7a) and Smallify
(Figure 5.7c) are close to their approximated counterparts, the behaviour of dynamic
variational dropout (Figure 5.7b) is poorly estimated by the fitted curve in comparison.
These observations match with the estimated quality of the simple prediction models.
Static variational dropout (Figure 5.6b) and Smallify (Figure 5.6a) contain relatively low
variance in the data that was used to generate the predictor functions, and therefore
the correlations of the hyperparameters can easily be captured and estimated by simple
linear functions. Dynamic variational dropout (Figure 5.6c) on the other hand contains
more noisy data, and the connections between the hyperparameters and the final
compression result are hard to discover and capture by a simple linear approximation.

Finally, correlations between the final compression ratio of the network after pruning
and the complexity of the initial network are investigated. With this insight, the

55

5. Experiments

5.0 5.5 6.0 6.5
log compression_ratio

16

14

12

10

8

6

lo
g

la
m

bd
a_

be
ta

s

Fitted
Baseline

5.0 5.5 6.0 6.5
log compression_ratio

17

16

15

14

13

12

11

lo
g

la
m

bd
a_

we
ig

ht
s

Fitted
Baseline

(a) Smallify

5.0 5.5 6.0 6.5
log compression_ratio

9.8

9.6

9.4

9.2

9.0

8.8

lo
g

va
ria

tio
na

l_s
ig

m
a

Fitted
Baseline

5.0 5.5 6.0 6.5
log compression_ratio

0.5

0.4

0.3

0.2

0.1

0.0

lo
g

pr
un

in
g_

th
re

sh
ol

d

Fitted
Baseline

(b) Static Var

4.0 4.5 5.0 5.5 6.0 6.5
log compression_ratio

12

10

8

6

4

lo
g

va
ria

tio
na

l_d
kl

_m
ul

tip
lie

r

Fitted
Baseline

(c) Dynamic Var

Figure 5.6.: Regression of simple functions that calculate choices of hyperparameters to
arrive at a given compression ratio for the Smallify and variational dropout
methods. All models analyze the pareto frontier of compression runs on
the mhd_p data set with Neurcomp and are fitted in log space.

56

5. Experiments

4.5 5 5.5 6 6.5

−9.8

−9.6

−9.4

−9.2

−9

compression_ratio

lo
g

ps
ig

m
a

Ground Truth Runs
Predicted

(a) Static Variational

5 5.5 6 6.5
−10

−8

−6

−4

compression_ratio

lo
g

dk
lr

am
p

up

Ground Truth Runs
Predicted

(b) Dynamic Variational

4.5 5 5.5 6 6.5

−12

−10

−8

−6

compression_ratio

lo
g

be
ta

Ground Truth Runs
Predicted

(c) Smallify

Figure 5.7.: Control quality of regressed linear models for Neurcomp. The theoretical
predicted results of each linear model are compared with real compression
outcomes.

initial size of Neurcomp for each pruning method can be derived to achieve a specific
compression ratio with maximum reconstruction quality. This experiment is depicted
in Figure 5.8, where along the pareto frontier from Figure 5.3 the final compression on
the x-axis and the initial network compression ratio on the y-axis are compared. On the
basis of these data simple linear functions are again regressed. Apart from allowing
users to choose the optimal starting network complexity for a given final compression
rate, this experiment gives further insight in the pruning behaviour of the pruning
methods for varying network complexities.

From the data of the static and dynamic variational dropout (Figure 5.8a, Figure 5.8b),
functions can be regressed that initially map final compression ratios to starting com-
pression ratios of similar size. This indicated that these dropout methods prune
relatively small bits of the original network at small target compression rates. However,
this changes at larger compression ratios of 200 and above, where especially dynamic
variation dropout cuts off large portions of the originally larger network. Smallify

57

5. Experiments

(Figure 5.8c), on the other hand, maintains a relatively stable correlation between the
final and initial network complexity along the examined compression rate range.

5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4
log compression_ratio

5.0

5.2

5.4

5.6

5.8

6.0

6.2

lo
g

pr
e_

pr
un

e_
co

m
pr

Fitted
Baseline

(a) Static Variational

4.0 4.5 5.0 5.5 6.0 6.5
log compression_ratio

4.0

4.5

5.0

5.5

6.0

lo
g

pr
e_

pr
un

e_
co

m
pr

Fitted
Baseline

(b) Dynamic Variational

3.5 4.0 4.5 5.0 5.5 6.0 6.5
log compression_ratio

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

lo
g

pr
e_

pr
un

e_
co

m
pr

Fitted
Baseline

(c) Smallify

Figure 5.8.: Correlate the final and initial network compression ratio for variational
dropout and Smallify. All data points were taken from the pareto frontier
of a free hyperparameter search of Neurcomp on the mhd_p data set.

Effects of Resnet Architecture

The results of Figure 5.4 and Figure 5.3 show that pruning methods, especially varia-
tional dropout, can indeed increase the quality-compression ratio of Neurcomp. It is
reasonable to assume that even more improvements can be made by further unlocking
the potential of the pruning methods. A major weakness of the Neurcomp architecture

58

5. Experiments

towards pruning algorithms is its reliance on residual blocks. Although these blocks
bring stability to the training of deep neural networks, they also impose restrictions on
the structure of the models. In particular, they require that the incoming and outgoing
neurons of a residual block have the same size so that residual features can be correctly
transmitted. This restriction limits the use of pruning layers to be applied only within
the residual blocks, effectively halving the amount of pruning layers in the network.
Removing these residual blocks risks destabilizing the training process, but allows
to supervise all hidden layers of the network with pruning layers. This tradeoff is
investigated by comparing the Smallify and variational dropout methods with and
without the use of residual layers.

Figure 5.9 visualizes the result of this experiment for the Smallify method. The NAS
algorithm is again used to generate a baseline, as well as optimal parameterization
for the pruning network. Similar to the experiment results in Figure 5.4b, Smallify is
able to surpass the compression baseline for very small amounts of pruning. Without
the restrictions of the resnet-architecture, however, Smallify can also outperform the
baseline and pruned resnet version for larger compression ratios over 200. Nonetheless,
these compression gains are still quite small, with only between 1 and 1.5 PSNR points
difference and are therefore not exempt from influence through NAS variance.

100 200 300 400 500

36

38

40

42

44

Compression_Ratio

PS
N

R

Pruned No Resnet
Pruned With Resnet
Baseline No Resnet

Figure 5.9.: Comparison of the quality-compression ratio when using the Smallify tech-
nique on the same Neurcomp network with and without built-in residual
blocks.

Figure 5.10 depicts the results for the same experiment with the variational dropout

59

5. Experiments

approach. The figure first compares dynamic and static variational dropout against the
unpruned baseline (Figure 5.10a). While both methods are able to surpass the baseline,
in this experiment the dynamic pareto frontier is able to exceed the static pareto frontier,
contrary to the results of the previous experiment, where residual blocks are enabled
(see Figure 5.3a). The dynamic variational dropout case without residual blocks is
compared with the previous best case of static variational dropout with residual blocks
in Figure 5.10b. This experiment shows that while the approach of omitting residual
blocks benefits dynamic variational dropout, the loss in training stability outweighs
this gain, as both methods are relatively equal in terms of their quality-compression
ratio.

100 200 300 400 500 600 700 800

34

36

38

40

42

44

Compression_Ratio

PS
N

R

Pruned Dynamic
Pruned Static
Baseline No Resnet

(a) Static VS Dynamic Pruning

200 300 400 500 600 700 800

36

38

40

42

44

Compression_Ratio

PS
N

R

Pruned No Resnet
Pruned With Resnet
Baseline Unpruned

(b) Pruning with and without Resnet

Figure 5.10.: Analysing the effects of variational dropout on Neurcomp with and with-
out residual blocks in regard to the final reconstruction quality and com-
pression ratio. Right: Comparison of dynamic pruning without resnet vs
best results from NAS on Neurcomp with resnet (static pruning).

Variational Dropout With Entropy Loss

As motivated in subsubsection 4.1.1 this thesis aims to further enhance the compressive
capabilities of variational dropout by introducing an additional entropy loss to the
training process. By incorporating the entropy of each dropout layer into the final
optimization, the goal is to improve the convergence of the dropout layers towards the
extrema of 0 and 1, leading to more consistent pruning decisions.

The effect of the Entropy loss on the optimization process is investigated by stopping
the network training before the pruning of the dropout layers and examining the

60

5. Experiments

resulting droprate distributions of each dropout layer. Figure 5.11 compares the dropout
distribution of each node for variational dropout compression with (Figure 5.11b) and
without (Figure 5.11a) the use of the additional Entropy loss. For both runs all other
network and pruning hyperparameters are kept constant and after initial NAS the
weighting of the Entropy loss is empirically set to be equivalent to the weight loss.
The experiment without the additional entropy shows that the majority of droprates
converge to either 0 or 1, but the variance in dropout values is still high. On the other
hand, drop rates for the experiment with entropy loss show better convergence to these
extremes than the drop rates in the experiment without entropy loss, although they
still are not perfectly distributed between 0 or 1, and especially layer 1 shows a large
variance in drop rates.

(a) Without Entropy Loss (b) With Entropy Loss

Figure 5.11.: Comparison of the distribution of dropout rates of variational dropout
layers in a Neurcomp network trained with and without additional Entropy
loss. Both networks are trained on the mhd_p data set until convergence
with otherwise fixed hyperparameters. Droprates in the network with
additional entropy loss converge more uniformly to the extrema 0 or 1
than in the network without entropy loss.

In addition, the effect of the Entropy loss on the training effectiveness is investigated
by comparing the PSNR and compression ratio of variational dropout networks that
incorporate the Entropy loss with those that do not. In Figure 5.12 this experiment is
visualized for networks with fixed hyperparameters for varying compression ratios.

61

5. Experiments

Although the Entropy loss has an impact on the droprate distribution, it falls short in
significantly impacting the final compression result. While the final compression ratios
and PSNR values vary slightly, these fluctuations can likely be attributed to variance
and irregularities in the network training process.

100 200 300 400 500

40

45

Compression_Ratio

PS
N

R
Pruned Without Entropy
Pruned With Entropy

Figure 5.12.: Comparison of achieved PSNR and compression ratio when training
dynamic variational droupout with and without the additional Entropy
loss on the mhd_p data set.

Layerwise Thresholds on Variational Dropout

Using the different dropout distributions in Figure 5.11a, it is observable that different
variational dropout layers in the Neurcomp architecture converge in different ways.
Based on this observation, it is proposed to use different thresholds for each layer
instead of a single global threshold used for the entire network. To this end the
same unpruned variational dropout Neurcomp network as in Figure 5.11a is analysed
and the effects of different layer thresholds on the PSNR and compression ratio are
investigated. Figure 5.13 depicts this experiment as a parallel coordinate plot, where
varying thresholds for each dropout layer are put in relation to the resulting PSNR and
compression ratio for a fixed and already trained network. The goal of this experiment
is to identify the thresholds that result in the highest combination of compression ratio
and PSNR.

The choice of a threshold for the first layer is relatively meaningless, as samples
that result in the highest PSNR and compression ratio can be drawn from the whole

62

5. Experiments

threshold value range in layer one. In contrast, the choice of threshold for the second
and third layer has a large impact on the resulting PSNR and compression ratio. Setting
the threshold for the third layer too high (e.g., below 0.4) will result in poorer prediction
quality, while insufficient pruning in the second layer (e.g., with a threshold above 0.8)
will also result in worse compression rates. This is consistent with the corresponding
observed droprate distributions, as layer three indicates all droprates below 0.4 to be
converging towards 0, and all droprates above 0.8 to be converging towards 1 in layer
2 given sufficient time. This experiment shows that layerwise thresholds improve the
quality-compression ratio of variational dropout in Neurcomp.

5.4. Pruning on fv-SRN

The goal of the experiments in this section is to improve the compressive capabilities
of fv-SRN using the simple binary masking, Smallify, and variational dropout. The
process is conducted similarly to Neurcomp, where NAS is used to establish a good
baseline for the unpruned network and to gain insight into the impact of pruning
hyperparameters on the compression process. Figure 5.14 shows the results of the
multi-objective optimization by plotting the achieved compression ratio on the x-axis
and the PSNR on the y-axis along the pareto frontier of each NAS run. The pruning
algorithms and the unpruned baseline are compared on the smaller turbulence volume
and larger mhd_p data set. To more accurately capture the existing variance in the
NAS, multiple experiments are being conducted again on the turbulence volume data
set.

The results for the turbulence volume data set are depicted in Figure 5.14b. The
singular experiment runs are varying strongly in achieved compression ratio and PSNR,
indicating a high variance in the compression results on the fv-SRN. Nevertheless, when
comparing the overall strongest compression results for the unpruned baseline and each
of the pruning algorithms, an advantage of the pruning algorithms over the baseline
from 2-5 PSNR points can be seen at smaller compression ratios up to 60. At higher
compression ratios, this advantage becomes less clear and the high variance makes it
difficult to make definitive conclusions about the advantage of pruning methods over
the unpruned network.

Figure 5.14a illustrates the performance of the pruning algorithms on the larger
mhd_p data set. Compared to the smaller turbulence volume data set, the pruning
algorithms demonstrate a superior compression gain. Smallify, the simple binary mask-
ing and dynamic variational dropout surpass the unpruned baseline by 4 to 5 PSNR
points between target compression ratios of 80 to 150. For very small, or considerably
larger compression ratios upwards of 250 the quality gain for all pruning algorithms

63

5. Experiments

Figure 5.13.: Effect of different dropout thresholds on variational dropout. In this
experiment Neurcomp is enhanced with dynamic variational dropout and
trained until convergence. Random dropout thresholds for each pruning
layer are then sampled uniformly and each layer is pruned accordingly.
The results for the optimal combination of PSNR and compression ratio,
which is attained by varying the dropout thresholds in layer 2 and layer
3, are analyzed. The varying optimal thresholds suggest that layerwise
thresholds are preferable to a global threshold for all layers in terms of
quality-compression ratio.

slows down. Static variational dropout outperforms the baseline for larger compression
ratios over 200 by a small amount, but underperforms for small compression ratios. In
contrast to the results for Neurcomp, both Smallify and dynamic variational dropout
consistently yield a higher compression-quality ratio than the unpruned baseline. A
comparison of the performance of the pruning algorithms in relation to each other is
difficult because of the high exhibited variance from the data along the pareto frontier.

To provide a comparison of pruning methods based on the least amount of variance

64

5. Experiments

0 100 200 300 400 500

35

40

45

50

55

Compression_Ratio

PS
N

R

MaskedStraightThrough
Baseline Unpruned
Smallify
Variational Dynamic
Variational Static

(a) mhd_ p

0 100 200 300 400

30

40

50

Compression_Ratio

PS
N

R

Smallify
Var Dynamic
Var Static
Unpruned

(b) turbulence volume

Figure 5.14.: Comparison of prediction accuracy (PSNR) and compression ratio of the
simple binary masking, Smallify, dynamic and static variational dropout
and unpruned baseline for the fv-SRN on the mhd_p and turbulence
data set. NAS is used to search simultaneously for optimal network and
dropout hyperparameters. Multiple NAS runs are performed for each
pruning method for the turbulence data set (faded lines).

in finding the optimal network architecture, again the network hyperparameters are
fixed and only the pruning parameters are changed to stimulate more pruning and
varying compression ratios. The Ax NAS algorithm is used for hyperparameter search
and to find the best pareto frontier of each pruning method along varying target
compression ratios. This experiment is depicted in Figure 5.15. Smallify again achieves
impressive results, outperforming all other pruning techniques and the baseline for
compression ratios between 150 and 350. The binary mask as well as the dynamic
variational dropout approach perform similar and are also able to surpass the unpruned
baseline. Static variational dropout does not perform as well at smaller compression
ratios up to 300, but improves at larger compression ratios. While the binary masking,
Smallify, and dynamic variational dropout converge to similar quality-compression
ratios at compression rates above 350, static variational dropout is able to outperform
all other methods at these rates.

65

5. Experiments

100 200 300 400 500 600

34

36

38

40

42

Compression_Ratio

PS
N

R

Binary Dropout
Baseline Unpruned
Smallify
Variational Dynamic
Variational Static

Figure 5.15.: Comparison of achieved PSNR and compression ratio when using the
simple binary masking, Smallify, dynamic or static variational dropout
with fv-SRN on the mhd_p data set. The network hyperparameters are
fixed for all pruning methods and NAS is used to search for different
optimal pruning hyperparameters to get varying compression ratios.

Hyperparameter Analysis

The influence of pruning hyperparameters on the pruning process is again investigated
by analyzing trends of the hyperparameters of each pruning technique. The results are
presented in Figure 5.16, which compares the impact of pruning hyperparameters on
the achieved compression ratio after training for each pruning method along the pareto
frontiers acquired in Figure 5.15. It can be observed that the pruning algorithms in
fv-SRN display similar behavior to Neurcomp, as discussed in subsubsection 5.3.

Static variational dropout (see Figure 5.16a) again exhibits a strong gradient in the
psigma parameter, which controls the extent of pruning with increasing value. Dynamic
variational dropout (see Figure 5.16b) behaves more unstable. Most hyperparameters
seem to switch values randomly without discernible coherence. The strongest gradient
can again be seen in the ramp up term for the DKL, although this plot also contains many
outliers. Smallify (see Figure 5.16c) and the simple binary masking (see Figure 5.16d)
are both mainly affected by the loss weighting factors for the beta-loss and weight
regularization.

Following a similar approach to Neurcomp (see subsubsection 5.3), the findings from
the hyperparameter analysis are used to derive simple function approximations for

66

5. Experiments

0 0.02 0.04

200

300

400

500

600

Co
m

pr
es

sio
n

Ra
te

DKL Ramp Up

8 6 4

200

300

400

500

600

PSigma

0.2 0.4 0.6

200

300

400

500

600

Co
m

pr
es

sio
n

Ra
te

Momentum

0.7 0.8 0.9

200

300

400

500

600

Pruning Threshold

(a) Static Var

0 0.00025 0.0005 0.00075 0.001

200

300

400

500

600

Co
m

pr
es

sio
n

Ra
te

DKL Ramp Up

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6

200

300

400

500

600

Co
m

pr
es

sio
n

Ra
te

Momentum

0.6 0.7 0.8 0.9

200

300

400

500

600

Pruning Threshold

(b) Dynamic Var

0 1 2 3 4
1e 7

200

300

400

500

600

700

800

Co
m

pr
es

sio
n

Ra
te

Beta Loss Weighting

0.000100.000000.000030.000050.00000

200

300

400

500

600

700

800

Weight Loss Weighting

0.000 0.025 0.050 0.075 0.100

200

300

400

500

600

700

800

Co
m

pr
es

sio
n

Ra
te

Momentum

0.6 0.7 0.8 0.9

200

300

400

500

600

700

800

Pruning Threshold

(c) Smallify

0.00 0.25 0.50 0.75 1.00
1e 7

200

400

600

800

1000

Co
m

pr
es

sio
n

Ra
te

Beta Loss Weighting

0.000100.000100.00000 0.000100.000100.000100.000100.000040.000000.000000.000000.00000

200

400

600

800

1000
Weight Loss Weighting

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n

Ra
te

0.6 0.7 0.8 0.9

200

400

600

800

1000
Pruning Threshold

(d) Binary Masking

Figure 5.16.: Comparing hyperparameters of the corresponding pareto frontiers for
the static and dynamic variational dropout, as well as Smallify. Each
hyperparameter is increased along the x-axis and mapped against the
resulting compression ratio on the y-axis.

67

5. Experiments

selecting a hyperparameter based on a desired compression ratio. The results of this
regression analysis are presented in Figure 5.17. The considerable variance depicted by
the hyperparameter search on the fv-SRN results in a high amount of noise in the data.
To mitigate the impact of outliers on the fitting process, a logarithmic scaling is applied
for both the compression rate and supplementary parameters, as they are non-negative.

Due to the high stability of the static variational dropout pareto frontier as a function
of the psigma parameter, the influence of this hyperparameter can be approximated
relatively well (see Figure 5.17c) and a simple function can be regressed that captures the
underlying trend of an increasing psigma corresponding to an increasing compression
ratio. The dynamic variational dropout, on the other hand, contains a larger parameter
variance in the data and cannot be approximated as well (see Figure 5.17b). Smallify
(see Figure 5.17a) and the simple binary masking (see Figure 5.17b) both exhibit similar
data trends and behave similar to the curve fitting task. Both pruning algorithms
have a higher variance in the beta weighting term, which in return is more difficult to
fit. In comparison, the weighting of the weight loss behaves more stable and can be
approximated more easily.

The quality of the regressed functions in Figure 5.17 are examined in Figure 5.18 by
plotting the theoretical achieved compression for a given hyperparameter, as dictated
by the predictor functions, against true compression results. For this purpose, the
prediction functions are used to determine the corresponding hyperparameters for
various target compression ratios. These hyperparameters are then used to train and
prune different fv-SRN instances, while keeping all other parameters constant across
each run. For each compression-hyperparameter pair, three instances are run to observe
the training variance of fv-SRN.

As the final compression rates of each instance corresponding to the same compression-
hyperparameter pair are very close to each other, it can be determined that the training
process involving fv-SRN and pruning is relatively stable. However, this does not hold
for the NAS task of finding optimal parameterizations for the network and pruning
algorithms. As seen in Figure 5.14 and Figure 5.17, the data along the pareto frontier
exhibits considerable variance, and the high dimensionality of the hyperparameter
searchspace creates a complex influence structure of each hyperparameter on the final
compression ratio. These factors reduce the ability of the regressed predictor functions
to select correct choices of hyperparameters values according to a given compression
ratio.

From all pruning methods the regressed function for static variational dropout
(see Figure 5.18a) performs the best and the true compression results follow the
approximation relatively closely. This observation is consistent with the reasonably
stable distribution of compression results in the pareto frontier of static variational
dropout, which does not have many outliers and is therefore comparatively easy to

68

5. Experiments

5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75
log compression_ratio

22

20

18

16

lo
g

la
m

bd
a_

dr
op

_lo
ss

Fitted
Baseline

5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75
log compression_ratio

17

16

15

14

13

12

11

10

9

lo
g

la
m

bd
a_

we
ig

ht
_lo

ss

Fitted
Baseline

(a) Smallify

5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00
log compression_ratio

22

21

20

19

18

17

16

lo
g

la
m

bd
a_

dr
op

_lo
ss

Fitted
Baseline

5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00
log compression_ratio

18

16

14

12

10

8

lo
g

la
m

bd
a_

we
ig

ht
_lo

ss
Fitted
Baseline

(b) Binary Masking

5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4
log compression_ratio

8

7

6

5

4

3

lo
g

va
ria

tio
na

l_s
ig

m
a

Fitted
Baseline

(c) Static Var

5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4
log compression_ratio

16

14

12

10

8

lo
g

we
ig

ht
_d

kl
_m

ul
tip

lie
r

Fitted
Baseline

(d) Dynamic Var

Figure 5.17.: Regression of simple linear functions that calculate choices of hyperparam-
eters to arrive at a given compression ratio for the Smallify and variational
dropout methods. All models analyze the pareto frontier of compression
runs on the mhd_p data set with fv-SRN and are fitted in log space.

69

5. Experiments

approximate in a reliable manner. On the other hand the true compression results of
the dynamic variational dropout (Figure 5.18b), Smallify (Figure 5.18c) and the simple
binary masking (Figure 5.18d) diverge from the prediction functions, although the
general trend is still captured.

5 5.5 6 6.5

−8

−6

−4

−2

log compression_ratio

lo
g

va
ri

at
io

na
l_

si
gm

a

Ground Truth Runs
Predicted

(a) Static Var

4.5 5 5.5 6 6.5

−12

−10

−8

log compression_ratio

lo
g

w
ei

gh
t_

dk
l_

m
ul

ti
pl

ie
r Ground Truth Runs

Predicted

(b) Dynamic Var

5 5.5 6 6.5

−18

−16

−14

−12

−10

log compression_ratio

lo
g

la
m

bd
a_

w
ei

gh
t_

lo
ss

Ground Truth Runs
Predicted

(c) Smallify

5 5.5 6 6.5

−18

−16

−14

−12

−10

log compression_ratio

lo
g

la
m

bd
a_

w
ei

gh
t_

lo
ss

Ground Truth Runs
Predicted

(d) Binary Masking

Figure 5.18.: Control quality of regressed linear models for fv-SRN. The predicted
results of each linear model are compared with real compression outcomes.

As with Neurcomp, the correlations between the final compression rates after pruning
and the initial complexity for fv-SRN are also examined. This experiment is depicted
in Figure 5.19, by plotting the final compression ratio of a network instance on the
x-axis and the initial network compression ratio on the y-axis. The pareto frontier of
the hyperparameter search from Figure 5.14 is analyzed and linear regression is used
to interlink the final compression and initial compression for each pruning algorithm.
Additionally, the influence of feature size and grid size on the final compression is
investigated.

All pruning methods express a strong correlation between their final compression
ratio and initial network complexity. Because all pruning algorithms express a function
that maps a final compression ratio to a substantially smaller initial compression

70

5. Experiments

ratio, it can be concluded that the fv-SRN undergoes a relatively aggressive pruning
process. Compared to the results of the same experiment for Neurcomp (see Figure 5.8),
the pruning algorithms on fv-SRN prune larger parts of the network even at smaller
compression ratios and do not change their pruning behaviour at different compression
ratios (e.g. prune larger chunks at larger compression ratios). Moreover, all pruning
methods show a strong correlation of the final compression rate as a function of the
feature grid size, while the choice of feature dimension seems rather arbitrary in
comparison. These findings are consistent with the results of the original fv-SRN by
Weiss et al. [WHW22].

5.4.1. Influence of Wavelet Transform on Pruning

The pruning results depicted in Figure 5.3 and Figure 5.14 demonstrate different affini-
ties to enhancement by network pruning for Neurcomp and fv-SRN. While Neurcomp
is not able to achieve significant quality improvements through the use of pruning
algorithms, fv-SRN can boost its quality by up to 5 PSNR points. To better understand
this behaviour, an analysis is conducted on the performance of the pruning layers in
Neurcomp and fv-SRN. Figure 5.20 displays the distribution of the internal per element
beta-values for Smallify and dropout-rates for variational dropout on Neurcomp and
fv-SRN as layerwise histograms. All distributions are gathered from the corresponding
network configurations on the pareto frontiers at a constant final compression ratio
of 100, and no tools to further enhance the convergence of the pruning layers, such
as an Entropy loss, are used. It can be observed that the pruning layers in fv-SRN
consist of a significantly greater number of elements compared to the pruning layers in
Neurcomp. Additionally, for fv-SRN the majority of the elements in the layers converge
better towards the desired extreme values of each pruning method than in Neurcomp.
This effect can be strongly seen for the variational dropout methods. Dynamic and
static variational dropout aim to categorize nodes into two groups: Nodes that contain
significant information should converge to a droprate of zero and are supposed to be
preserved, while nodes that converge to one can be pruned without largely affecting
the performance. On the other hand, Smallify is focused on eliminating nodes by re-
ducing the beta values of insignificant nodes to zero, and removing nodes that oscillate
near zero. Stronger convergence towards these extreme values enables the pruning
algorithms on fv-SRN to better identify unimportant nodes in the network, leading to
more informed pruning decisions that remove larger portions of the network while
having minimal impact on the overall reconstruction quality.

One reason for this behaviour could be that the pruning algorithms in fv-SRN have
greater control over most of the network parameters through the latent feature grid,
which is entirely observable to the pruning algorithms. In contrast, Neurcomp relies

71

5. Experiments

2 3 4 5 6
log compression_ratio

1

2

3

4

5

6

lo
g

pr
e_

pr
un

e_
co

m
pr

Fitted
Baseline

2.6 2.8 3.0 3.2 3.4 3.6 3.8
log pareto_GridSize

2

3

4

5

6

lo
g

co
m

pr
es

sio
n_

ra
tio

Fitted
Baseline

1.5 2.0 2.5 3.0 3.5
log pareto_FeatureSize

2

3

4

5

6

lo
g

co
m

pr
es

sio
n_

ra
tio

Fitted
Baseline

(a) Static Var

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
log compression_ratio

2.0

2.5

3.0

3.5

4.0

4.5

5.0

lo
g

pr
e_

pr
un

e_
co

m
pr

Fitted
Baseline

2.6 2.8 3.0 3.2 3.4 3.6 3.8
log pareto_GridSize

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

lo
g

co
m

pr
es

sio
n_

ra
tio

Fitted
Baseline

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
log pareto_FeatureSize

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

lo
g

co
m

pr
es

sio
n_

ra
tio

Fitted
Baseline

(b) Dynamic Var

2 3 4 5 6
log compression_ratio

2

3

4

5

lo
g

pr
e_

pr
un

e_
co

m
pr

Fitted
Baseline

2.6 2.8 3.0 3.2 3.4 3.6 3.8
log pareto_GridSize

2

3

4

5

6

lo
g

co
m

pr
es

sio
n_

ra
tio

Fitted
Baseline

1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50
log pareto_FeatureSize

2

3

4

5

6

lo
g

co
m

pr
es

sio
n_

ra
tio

Fitted
Baseline

(c) Smallify

2 3 4 5 6 7
log compression_ratio

2

3

4

5

6

lo
g

pr
e_

pr
un

e_
co

m
pr

Fitted
Baseline

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
log pareto_GridSize

2

3

4

5

6

7

lo
g

co
m

pr
es

sio
n_

ra
tio

Fitted
Baseline

1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50
log pareto_FeatureSize

2

3

4

5

6

7

lo
g

co
m

pr
es

sio
n_

ra
tio

Fitted
Baseline

(d) Binary Masking

Figure 5.19.: Correlate the final and initial network compression ratio for variational
dropout, Smallify and simple binary masking. Furthermore the influence
of the feature size and feature grid size on the final compression are
analysed. All data points were taken from the pareto frontier of a free
hyperparameter search of fv-SRN on the mhd_p data set.

72

5. Experiments

heavily on residual blocks and can only observe a small part of the network domain
through the pruning algorithms, limiting its effectiveness in pruning.

Another reason for the observed performance gap in the pruning algorithms for
Neurcomp and fv-SRN can be found in the utilization of the wavelet transform on
the feature grid of fv-SRN. To this end the influence of the wavelet transform on the
effects of pruning on the fv-SRN network is analyzed. This involves comparing the
compression performance and pruning behavior of the network using the pruning
algorithms, both with and without the frequency transformation applied to the latent
feature grid. The results of this experiment are depicted in Figure 5.21. For the
experiment NAS is performed to find a pareto frontier for each pruning method of
the fv-SRN network in regard to compression rate and PSNR. A fixed set of network
architectures along the pareto frontier is selected, and each experiment is conducted
either in frequency space with the wavelet transformation or spatially without the
wavelet transform. Only the pruning hyperparameters are optimized again with
NAS. Then the quality-compression ratio of fv-SRN with and without usage of the
wavelet transformation are plotted and compared. In order to analyze the impact of
the frequency domain on pruning behavior, the percentage of pruned network parts
in relation to the full network size is also measured. A higher amount of pruning
percentage means that a higher amount of the original network representation is
pruned. The advantages of the wavelet transformation are analyzed on the Smallify
(Figure 5.21a), dynamic variational dropout (Figure 5.21b) and static variational dropout
(Figure 5.21c) algorithms.

One can see that the quality-compression ratio of the pruned networks with the use of
wavelet transformations consistently surpass the networks that do not use the wavelet
transformation. In the same way the networks with the use of wavelet transformation
prune larger amounts of the original network and can surpass the pruning amount
of the networks without wavelet transform by 50%. These results indicate that the
frequency representation of the networks feature space is indeed beneficial to pruning
and results in more compact network representation than when handling the spatial
grid directly.

73

5. Experiments

3 2 1 0 1 2 3
0

20

40

60

80
Layer 0

2 1 0 1 2
0

20

40

60

Layer 1

2 1 0 1 2
0

25

50

75

100
Layer 2

Neurcomp

4 2 0 2 4 6
0

50

100

150

Layer 0

7.5 5.0 2.5 0.0 2.5 5.0 7.5
0

250

500

750

1000

Layer 1

8 6 4 2 0 2 4 6
0

500

1000

1500

2000

Layer 2

fv-SRN

(a) Smallify

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

2.5

5.0

7.5

10.0

Layer 0

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

Layer 1

0.00 0.01 0.02 0.03 0.04 0.05 0.06
0

5

10

15

Layer 2

Neurcomp

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150
Layer 0

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000

Layer 1

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000
Layer 2

fv-SRN

(b) Dynamic Var

0.0 0.2 0.4 0.6 0.8
0

5

10

15

20

Layer 0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20
Layer 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

25

50

75

100
Layer 2

Neurcomp

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

Layer 0

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

Layer 1

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

Layer 2

fv-SRN

(c) Static Var

Figure 5.20.: Distribution of pruning values in Neurcomp and fv-SRN. The distribu-
tions are gathered from the network pareto frontiers at a constant final
compression ratio of 100.

74

5. Experiments

150 200 250 300 350 400 450 500
Compression Ratio

36

37

38

39

40

41

PS
NR

With Wavelet
Without Wavelet

150 200 250 300 350 400 450 500
Compression Ratio

0

10

20

30

40

50

60

70

Pr
un

ed
 in

 %

With Wavelet
Without Wavelet

(a) Smallify

200 300 400 500
Compression Ratio

35

36

37

38

39

40

41

PS
NR

With Wavelet
Without Wavelet

200 300 400 500
Compression Ratio

0

10

20

30

40

50

60

70

Pr
un

ed
 in

 %
With Wavelet
Without Wavelet

(b) Dynamic Var

200 300 400 500 600
Compression Ratio

36

37

38

39

40

PS
NR

With Wavelet
Without Wavelet

200 300 400 500 600
Compression Ratio

0

10

20

30

40

50

60

70

Pr
un

ed
 in

 %

With Wavelet
Without Wavelet

(c) Static Var

Figure 5.21.: Comparison of pruning effectiveness on the fv-SRN, when the feature grid
is represented in the frequency domain or spatial (without wavelets). Each
pruning algorithm is compared in regard to its overall quality-compression
ratio (left figure) and amount of pruning performed (right figure).

75

6. Discussion

The main goal of this thesis is to improve implicit neural compression algorithms, such
as Neurcomp and fv-SRN, through the utilization of pruning methods like Smallify and
variational dropout. These algorithms aim to improve the quality-compression ratio
of the underlying network by pruning parameters with small influence to the overall
prediction accuracy, thereby generating a sparse and compressed network architecture.
Additionally, by using the wavelet transformation to acquire a frequency representation
of a networks feature space, this thesis aims to enhance the sparsification capabilities of
the pruning algorithms further.

6.1. Effects of Pruning on Neurcomp

As demonstrated in section 5.3 both Smallify and variational dropout exhibit only
marginal improvements, if any, in terms of quality-compression ratio over an unpruned
network for Neurcomp.

On the turbulence volume data set no pruning method is able to surpass the un-
pruned baseline. Additionally, the high dimensional search space for hyperparameters
complicates finding conclusive pareto frontiers with NAS, leading to considerable noise
and variance in the results.

On the larger mhd_p data set the pruning methods exhibit a stronger potential
to improve the quality of the unpruned baseline. Smallify and dynamic variational
dropout produce marginal improvements, which are not significant in light of the NAS
variance. Only static variational dropout is able to produce consistent improvements
over the unpruned baseline of 1 to 2 PSNR points. However, given the high variance
associated with the NAS, even these quality gains should be approached with caution.
Overall these initial results do not demonstrate high enough improvements to justify
the usage of pruning algorithms with Neurcomp, considering the additional effort in
implementation and more complex hyperparameter optimization.

Hyperparameter analysis is conducted to get more insight into the internal workings
of the pruning methods and to establish simple predictor models that can map a desired
compression ratio to a selection of a hyperparameter. Indeed, hyperparameter analysis
reveals that the behavior of the pruning algorithms, like the magnitude of pruning, is

76

6. Discussion

primarily controlled by one or two hyperparameters. Based on these findings simple
predictor functions are regressed. To assess the quality of these functions, the true
achieved compression ratios are compared to the predictor’s estimates. The results
indicate that the prediction models for Smallify and dynamic variational dropout can
only provide rough approximations of the compressive behaviour of these pruning
algorithms. Nevertheless, static variational dropout is closely matched by its prediction
model. The comparatively stable behaviour of static variational dropout could be the
reason for its superior performance during pruning, since NAS is able to find the
optimal parameterizations more easily.

Finally, additional methods to increase the performance of the pruning algorithms
are investigated. Efforts to increase the pruning performance, such as removing the
residual blocks from the Neurcomp architecture or incorporating an Entropy loss
to improve dropout convergence in variational dropout, do not lead to the desired
improvements. While the removal of residual blocks from the Neurcomp architecture
enables more pruning options and enhances the overall gain of each pruning algorithm
to the unpruned baseline, the loss in prediction accuracy due to the missing residual
blocks nullifies this advantage. In the same way the inclusion of an additional Entropy
loss is able to increase the convergence of the dropout layers to the extreme values of
0 and 1, but ultimately fails to consistently outperform the dropout version without
Entropy loss. One possible explanation for this outcome is that incorporating too many
simultaneous losses bloat the network training optimization and complicates the search
for optimal hyperparameters, thereby outweighing the advantages of slightly better
dropout convergence.

Lastly, based on the observation that different layers of the Neurcomp architecture
converge in different ways for variational dropout, the usage of different dropouts
per layer instead of a global dropout is proposed. Evaluation of the effects of various
per-layer pruning thresholds on the quality-compression ratio of Neurcomp supports
this hypothesis. However, implementing layer-wise thresholds for each layer adds
additional hyperparameters to the network, which makes it more difficult for a NAS
algorithm to identify the best network architecture. A solution to this problem is to
choose individual layer pruning thresholds only after initial training of the network has
completed. This way, the dimensionality of the hyperparameter space is not bloated
and the effectiveness of different layer thresholds can be evaluated more efficiently
without the need for retraining the model from scratch.

77

6. Discussion

6.2. Effects of Pruning in fv-SRN

As demonstrated in section 5.4, fv-SRN seems to be more suitable for enhancing
compressive abilities of the base network with pruning algorithms.

The pareto frontiers of the pruning algorithms are able to surpass the unpruned
baseline by 2-5 PSNR points for small compression ratios on the turbulence volume data
set. While the pruning algorithms can also outperform the unpruned baseline at larger
compression ratios in places, the high variance observed in the NAS makes conclusive
decisions about the advantage of the pruning algorithms at larger compression ratios
unfeasible. The variance and noise exhibited by the fv-SRN experiments when tasked
to find optimal pareto frontiers with NAS is significantly higher than the variance
observed with Neurcomp. Besides differences in network structure and training process,
the high variance of hyperparameter search in fv-SRN can likely be attributed to its
more complex hyperparameter search space, which includes parameters describing the
feature vector and grid sizes, in addition to the fully connected network.

For the larger mhd_p data set, the pruning algorithms are able to realise even higher
quality-compression improvements of up to 4 to 5 PSNR points compared to the un-
pruned baseline. Compared to the smaller datset, the pruning methods are able to
consistently outperform the baseline, even at higher compression ratios. Although
Smallify performs the best of all dropout algorithms for the mhd_p data set, the differ-
ences in quality are relatively minor. Additionally, the variational dropout algorithm
does also show promising improvements on the mhd_p data set and is even able to
outperform Smallify for some compression ranges in the turbulence volume data set.
Because of the high variance present in the data it is hard to arrive at a definitive
conclusion regarding the most effective pruning algorithm for fv-SRN.

As for Neurcomp, a hyperparameter analysis is conducted on the pruning pareto
frontiers provided by NAS in order to find the most influential hyperparameters for
each pruning method. Based on these findings simple linear predictor functions are
generated that map a given selection for a final compression ratio to a correspond-
ing choice of pruning hyperparameter. With the help of these simple functions the
arduous task of tuning the network- and pruning hyperparameters to fit the desired
final compression ratio could be simplified. However, this goal is complicated by the
high variance present in the data of the pareto frontiers for fv-SRN. Although static
variational dropout again closely matches the predictive model, all pruning methods
are not as accurately captured by the prediction models as observed in Neurcomp.

Despite the high variance present in NAS, fv-SRN displays promising quality gains
when coupling the network with pruning methods. These results support the initial

78

6. Discussion

idea of enabling a SRN to learn an optimal network size in regard to both reconstruction
quality and compression ratio with network pruning techniques. Although the pruning
algorithms, especially variational dropout and Smallify, have positive impacts on the
overall quality of data compression with fv-SRN, real world applicability of these
methods is negatively affected by the high variance when tasked to find optimal
network and pruning parameterizations. This high variability makes it challenging
for users to find the best hyperparameters for fv-SRN and the pruning algorithms,
which hinders the precise computation of the final compression ratio and reconstruction
accuracy post pruning. Future research could further improve the quality-compression
ratio of pruning on fv-SRN by limiting the dimensionality of the hyperparameter
searchspace for NAS, or by providing a more stable training of the pruning algorithms.
For variational dropout this could be achieved through implementation of the local
reparameterization trick [KSW15] or better suited priors, as proposed by Nguyen et
al. [Ngu+21].

6.3. Comparison of Pruning on Neurcomp and fv-SRN

Neurcomp and fv-SRN seem to have varying degrees of suitability for improving com-
pression quality through pruning algorithms. While the search for the pareto frontiers
of the pruning algorithms on Neurcomp behaves more stable and exhibits less variance,
only pruning on fv-SRN leads to significant improvements of the quality-compression
ratio of the network. Figure 5.20 indicates that the pruning values generated by the
pruning layers converge more effectively to the target extreme values of each pruning
technique in fv-SRN than in Neurcomp. This superior convergence capacity enables
the pruning algorithms in fv-SRN to recognize unimportant nodes in the network
more accurately, resulting in better pruning decisions. As seen for Neurcomp in Fig-
ure 5.3 and Figure 5.4, as well as for fv-SRN in Figure 5.14 and Figure 5.15, fv-SRN
thus demonstrates considerably higher quality-compression gain from the usage of
additional pruning algorithms in the network. While the pruning algorithms are able
to improve the PSNR at most 1 to 2 points for Neurcomp, fv-SRN is able to obtain
PSNR improvements between 4 to 5 points when compared to unpruned baselines of
the corresponding networks. Even though generation of the pareto frontiers with NAS
exhibits considerably more variance for fv-SRN, the additional quality gain makes it
the better alternative for optimization with pruning algorithms.

One reason for this behaviour could be the different pruning approaches for Neur-
comp and fv-SRN: Pruning in Neurcomp is targeting the network layers and is thus
restricted by the residual blocks. While it is possible to remove the residual blocks,
opening the entire network to pruning, doing so results in a considerable loss of stability

79

6. Discussion

for the network and negates any potential performance gains from pruning. On the
other hand pruning in fv-SRN is aiming at sparsifying the latent feature grid, where
the whole grid domain is more accessible to the pruning algorithms.

The superior pruning performance of fv-SRN can also be attributed to the use of
the wavelet transformation for representation of the feature grid. By transforming the
feature grid into the frequency domain, different transform coefficients capture distinct
low-frequency and high-frequency information about the original data. Notably, a
majority of the original signal’s energy is concentrated in a small number of coefficients.
This trait helps the pruning algorithms to identify the transform coefficients with
the most influence to prediction accuracy and enables the algorithms to more easily
discards the less important coefficients. The sparsity potential of the wavelet transform
thus exceeds that of the spatial representation, making the pruning methods more
efficient.

All pruning methods on the Neurcomp and fv-SRN achieve a higher quality gain
when tasked to prune on larger data sets and larger networks, as opposed to smaller
data sets and smaller networks. This indicates that the size of the encoding network
is crucial for the success of the pruning algorithms. If a pruning algorithm is applied
to a large neural network, it will be able to find and remove unimportant nodes more
easily compared to a small network. Conversely, in a smaller network, a pruned node
will have a greater impact on the overall quality of the network, thereby decreasing
the effectiveness of the pruning. As a result, pruning algorithms should be preferably
paired with SRN when tasked to handle large data, but can lead to no visible quality-
compression gain when compressing small data sets.

80

7. Conclusion

This thesis implements and investigates three pruning methods, namely a simple binary
masking, Smallify [Lec+18], and variational dropout [MAV17], to explore their potential
in improving the compression quality of Neurcomp [Lu+21] and fv-SRN [WHW22].
While the pruning of the Neurcomp architecture does not result in notable improve-
ments, the pruning algorithms are able to enhance the quality of fv-SRN. The analysis
in this thesis concludes that network pruning algorithms are most effective in enhancing
the quality of networks where a high number of parameters are susceptible to pruning.
This observation is supported by the fact that pruning algorithms achieve better quality
improvements when used with networks that handle larger data sets and thus boast
a higher parameter count in the network. Essentially, the higher the initial parameter
count of the model, the greater the potential for improvements through pruning. The
effectiveness of the pruning algorithms can be further optimized by applying frequency
transformations to the feature space of the network, thereby enabling a more efficient
sparsification compared to the untransformed spatial representation. However, the ap-
plicability of the findings in this thesis is reduced by the large variance of compression
results observed during NAS. Finding optimal hyperparameters for a fv-SRN instance
and pruning algorithm, accurately predicting the pruning behavior and thus the final
compression ratio and quality, becomes challenging due to this factor.

There still exist several open issues and untested methods that could potentially
improve the stability and compression quality of pruning methods on SRN. In particular,
variational dropout has been the focus of recent research on pruning algorithms, and
studies have been conducted that are able to improve the performance of the dropout
algorithm. The local reparameterization trick proposed by Kingma et al [KSW15],
for example, represents an efficient tool for training of the variational dropout layers,
and improves the estimation of the gradients for the expected log likelyhood during
training. Instead of sampling the separate variational noise per input and applying the
noise to the output of a previous layer to get the activation values of the dropout layer,
the outputs can be sampled directly from their implied Gaussian distributions. This
procedure yields a gradient estimator that is computationally efficient and has lower
variance, thereby improving training consistency.

Other work includes Variational Structured Dropout (VSD) by Nguyen et al. [Ngu+21].
Their proposal involves using Householder transformations on the multiplicative

81

7. Conclusion

noise for learning a structured representation of the variational Gaussian noise. This
method obtains an approximate posterior with structured covariance, which enables the
posterior to capture dependencies among network weights and is thereby able to avoid
limitations associated with the mean-field Gaussian priors used in the implementation
of this thesis.

82

A. Figures

A.1. Pruning With and Without Quantization

0.00 100.00 200.00 300.00 400.00
Compression_Ratio

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

PS
NR

Unquantized
Smallify
Variational Dynamic
Baseline Unpruned

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00
Compression_Ratio

35.00

40.00

45.00

50.00

55.00

60.00

65.00

PS
NR

Quantized
Smallify
Variational Dynamic
Baseline Unpruned

(a) Neurcomp

0 50 100 150 200 250 300 350 400
Compression_Ratio

35

40

45

50

55

60

PS
NR

Unquantized
Smallify
Var Dynamic
Var Static
Unpruned

0 200 400 600 800 1000
Compression_Ratio

35

40

45

50

55

60

PS
NR

Quantized
Smallify
Var Dynamic
Var Static
Unpruned

(b) fv-SRN

Figure A.1.: Evaluating the quality-compression ratio of the pruning algorithms on
Neurcomp (a) and fv-SRN (b) prior and post quantization on the test
data set. Even though quantization affects the final compression ratio, the
relations among the plots do not change.

83

A. Figures

A.2. Rendering of Data Sets

(a) Neurcomp

(b) fv-SRN

Figure A.2.: Rendering of the mhd_p data set (255, 255, 255) on the left and turbulence
data set (150, 150, 150) on the right. Both data sets are compressed by
Neurcomp (a) and fv-SRN (b) at a compression ratio of 100. Neurcomp
and fv-SRN compress the mhd_p data set at 44 PSNR, while the turbulence
data set is compressed at 42.2 PSNR by Neurcomp and at 41.9 PSNR by
fv-SRN.

84

List of Figures

2.1. Example of Quantization . 7
2.2. Example of Hierarchical Order of Wavelet Transform 9
2.3. Example of a Deep Neural Network . 11
2.4. Structure of Neurcomp . 14
2.5. Structure of FV SRN . 17
2.6. Example of Bayesian Networks . 24

3.1. Example of Nerf . 32
3.2. Example of Structured and Unstructured Pruning 38

5.1. Comparison Neurcomp Quantization Accuracies 50
5.2. Baseline Comparison TTHRESH, Neurcomp and fv-SRN 51
5.3. fv-Neurcomp NAS on Network and Pruning Hyperparameters 52
5.4. Neurcomp NAS on Fixed Network Sizes 53
5.5. Hyperparameter Analysis Neurcomp . 54
5.6. Linear Regression of Neurcomp Hyperparameters 56
5.7. Quality Control Regression Neurcomp 57
5.8. Correlation of Final and Initial Network Complexity for Neurcomp . . 58
5.9. Comparison Residual Block Architecture on Smallify 59
5.10. Comparison Residual Block Architecture on Variational Dropout 60
5.11. Comparison Drop Rates on Variational Dropout With and Without En-

tropy Loss . 61
5.12. Comparison PSNR and Compression Rate With and Without Entropy Loss 62
5.13. Analysis Dynamic Threshold in Variational Dropout 64
5.14. fv-SRN NAS on Network and Pruning Hyperparameters 65
5.15. fv-SRN NAS on Fixed Network Sizes . 66
5.16. Hyperparameter Analysis fv-SRN . 67
5.17. Linear Regression on fv-SRN Hyperparameters 69
5.18. Quality Control Regression fv-SRN . 70
5.19. Correlation Final and Initial Network Complexity fv-SRN 72
5.20. Distribution of Pruning Rates in Neurcomp and fv-SRN 74
5.21. Comparison fv-SRN with and without wavelt transformation 75

85

List of Figures

A.1. Pruning With and Without Quantization 83
A.2. Rendering of Data Sets . 84

86

List of Tables

4.1. Listing of hyperparameters present in the pruning methods and SRN . 40

87

Glossary

activation function The activation function of a node defines the output of that node
on a series of inputs. Often the activation function is nonlinear, in order to allow
the networks to compute nontrivial problems that don’t have to follow linear
behaviour. 10, 12, 20, 35

arithmetic coding Arithmetic coding is an entropy based compression algorithm that
encodes frequently occurring symbols with fewer bits than not so frequent sym-
bols. Different to other types of entropy coders, arithmetic coding encodes the
input data as a single number of arbitrary precision, from which the original data
can be restored. 6

backpropagation Algorithm for training feedforward networks. This is done by com-
puting the gradient of a given loss function with respect to the network weights
for an observed input-output pair. The algorithm iterates backwards through
the network and calculates the gradient of each layer, given the gradient of the
previous layer. According to a calibrated learning strategy, the weights of each
layer are then updated, to minimize their impact on the loss.. 13, 16, 18

basis wavelet Mother wavelet that is translated and dilated to form smaller wavelets
that extract specific information from a base signal. 8

bayesian optimization Global optimization strategy that employs a surrogate model
and an acquisition function to probe a black-box function in a sample-efficient
manner. 25, 26

bias Bias are parameters of a neural network that are added to the weighted input of a
node to shift the activation function. 10, 12

bit-plane coding Compression technique that uses the binary representation of the
input data and iteratively compresses the same bit (bit-plane), starting from the
most significant bit-plane. 6

chain rule Formula that is used to describe the derivative of the composite of two
functions f (·) and g(·) as f (g(x))′ = f ′(g(x)) · g′(x).. 18

88

Glossary

direct volume rendering A widely used visualization method for rendering volume
data. The technique works by using raycasting to scan the volume along rays r(t)
from a viewing diretion v = (v1, v2). Sampled points along the ray are evaluated
by means of interpolation, associated color and opacity values c(r(t), v) and
σ(r(t)) are read out, shaded and occluded according to the accumulated density
along the ray T(t) and then calculated to the resulting pixel value C(r):

C(r) =
∫ t2

t1
T(t) · σ(r(t)) · c(r(t), v) (A.1)

. 4, 11, 14, 16, 29, 30

expected log-likelihood The natural logarithm of the likelihood. The likelihood LD(Θ)

describes the probability of observing data D when parameterizing a probability
distribution with Θ. 21

fine-tuning Retraining a network with a lower learning rate to further enhance accuracy
of the neural network. 17

HOSVD Many transform-based compression algorithms for volumetric data rely on
some form of data-dependent bases that decompose the data set into smaller
approximations of lower dimension. HOSVD (Higher-Order SVD) is one such
approximation and is a generalization of matrix SVD for tensors. 6

Huffman encoding Huffman encoding is a compression algorithm that uses the entropy
of the input data to encode frequently occurring symbols with fewer bits than not
so frequent symbols. 34

hyperparameter Hyperparameters are fixed before training and determine the network
architecture (e.g., by specifying the number or size of hidden layers) and the
training process (e.g., by deciding how much data to use in each training iteration
or how fast to update the network’s parameters). 12, 16, 20, 24, 36, 37, 39, 40, 43,
44, 46, 48–56, 58, 61, 63, 65–70, 72, 73, 76–79, 81, 87

k-means clustering Quantization method, where the elements of an input vector are
partitioned into k clusters. Each element is then assigned to the cluster with the
nearest mean or cluster centroid. Each original element is then represented by
the cluster cencer value, thus quantizing the data.. 13, 34

Kullback-Leibler divergence The Kullback-Leibler divergence DKL(Q||P) measures the
distance between two probability distributions Q and P. 21

89

Glossary

node Also called neuron. A neural network computational unit comprising one or
more weighted input connections, an activation function combining the inputs in
some manner, and an output connection. 10

pareto frontier Term used in mutli-objective optimization to describe the set of optimal
tradeoff solutions (pareto-optimal solutions).. 24, 49, 52–54, 56, 57, 60, 64–66, 68,
70, 78, 79

posterior distribution Conditional probability that results from updating the prior
probability p(Θ) with information from data D: p(Θ|D) = p(D|Θ) · p(Θ)/p(D).
Intuitively, this can be understood as asking "What is the probability of Θ, given
D". 21

PSNR Logarithmic measure commonly used to quantify the reconstruction quality
of data subject to lossy compression. It describes the relationship between the
maximum possible power of a signal and the amount of interfering noise that
affects the quality of the signal. A high PSNR corresponds to a high quality of
the reconstructed signal.. 48–53, 59, 61–63, 65, 66, 73

quantization error Difference between the original value and the mapped value after
quantization. 6

quantizer Device that performs quantization and maps a set of input values to a finite
set of output values that approximate the input data. 6

run-length coding Run length encoding is a compression method in which sequences
containing redundant data are stored as a single data value indicating the repeated
block and the number of times it is repeated in the input data. 6

structured pruning Culling of individual parameters of the network weight matrices,
resulting in sparse weight matrices. 19, 35, 38

sub-band Frequency bands. 8, 9

targeted pruning Cull neurons adaptively according to a metric that induces a param-
eter ranking. 19, 34, 38

unstructured pruning Culling of parameter groups of the network weight matrices
(e.g., culling entire neurons), resulting in dense weight matrices. 35, 38

90

Glossary

variational dropout Extends dropout with a Bayesian approach to parameterize a
network using an approximated posterior distribution. This way, the drop rate is
not preset as a hyperparameter, but can be learned individually for each layer
through training. 20, 37

wavelet Group of oscilating functions that can be fit to match a part of a base input
signal. 7

wavelet transform Transform that captures a base signal as a set of wavelets derived
from dilating and translating a basis wavelet. 7–9

weight Weights are parameters of a neural network that are multiplied with the input
of a node to symbolize the weighted connections between nodes of different
layers. 10–13, 20, 24, 35

91

Acronyms

DNN Deep Neural network. 10, 16, 34, 35, 38

DWT Discrete Wavelet Transform. 8

EMA Exponential Moving Average. 20

NAS Neural Architecture Search. 24, 25, 48–53, 59–61, 63, 65, 66, 68, 73, 76–79, 81, 85

SRN Scene Representation Network. iv, 1, 2, 5, 6, 10, 11, 27, 31, 79–81, 87

92

Bibliography

[Ahr+05] J. Ahrens, B. Geveci, C. Law, C. Hansen, and C. Johnson. “36-paraview: An
end-user tool for large-data visualization.” In: The visualization handbook
717 (2005), pp. 50038–1.

[Bak+16] B. Baker, O. Gupta, N. Naik, and R. Raskar. “Designing neural network ar-
chitectures using reinforcement learning.” In: arXiv preprint arXiv:1611.02167
(2016).

[Bak+18] E. Bakshy, L. Dworkin, B. Karrer, K. Kashin, B. Letham, A. Murthy, and
S. Singh. “AE: A domain-agnostic platform for adaptive experimentation.”
In: Conference on Neural Information Processing Systems. 2018, pp. 1–8.

[BB86] R. N. Bracewell and R. N. Bracewell. The Fourier transform and its applications.
Vol. 31999. McGraw-Hill New York, 1986.

[Bha18] J. Bhattacharjee. fastText Quick Start Guide: Get started with Facebook’s library
for text representation and classification. Packt Publishing Ltd, 2018.

[Bla+20] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag. “What is the state
of neural network pruning?” In: Proceedings of machine learning and systems
2 (2020), pp. 129–146.

[BLC13] Y. Bengio, N. Léonard, and A. Courville. “Estimating or propagating
gradients through stochastic neurons for conditional computation.” In:
arXiv preprint arXiv:1308.3432 (2013).

[BLP19] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola. “TTHRESH: Tensor
compression for multidimensional visual data.” In: IEEE transactions on
visualization and computer graphics 26.9 (2019), pp. 2891–2903.

[BP16] R. Ballester-Ripoll and R. Pajarola. “Lossy volume compression using
Tucker truncation and thresholding.” In: The Visual Computer 32.11 (2016),
pp. 1433–1446.

[Che+15] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen. “Compressing
neural networks with the hashing trick.” In: International conference on
machine learning. PMLR. 2015, pp. 2285–2294.

93

Bibliography

[Che+17] Y. Cheng, D. Wang, P. Zhou, and T. Zhang. “A survey of model com-
pression and acceleration for deep neural networks.” In: arXiv preprint
arXiv:1710.09282 (2017).

[Che+21] A. Chen, Z. Xu, F. Zhao, X. Zhang, F. Xiang, J. Yu, and H. Su. “Mvsnerf:
Fast generalizable radiance field reconstruction from multi-view stereo.”
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
2021, pp. 14124–14133.

[CK19] R. M. Cichy and D. Kaiser. “Deep neural networks as scientific models.”
In: Trends in cognitive sciences 23.4 (2019), pp. 305–317.

[CZ19] Z. Chen and H. Zhang. “Learning implicit fields for generative shape
modeling.” In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2019, pp. 5939–5948.

[DBB21] S. Daulton, M. Balandat, and E. Bakshy. “Parallel bayesian optimization of
multiple noisy objectives with expected hypervolume improvement.” In:
Advances in Neural Information Processing Systems 34 (2021), pp. 2187–2200.

[DC16] S. Di and F. Cappello. “Fast error-bounded lossy HPC data compression
with SZ.” In: 2016 ieee international parallel and distributed processing sympo-
sium (ipdps). IEEE. 2016, pp. 730–739.

[dCM00] O. de Vel, D. Coomans, and Y. Mallett. “Chapter 19 - Wavelet-Based Image
Compression.” In: Wavelets in Chemistry. Ed. by B. Walczak. Vol. 22. Data
Handling in Science and Technology. Elsevier, 2000, pp. 457–478. doi:
https://doi.org/10.1016/S0922-3487(00)80044-1. url: https://www.
sciencedirect.com/science/article/pii/S0922348700800441.

[Den+22] K. Deng, A. Liu, J.-Y. Zhu, and D. Ramanan. “Depth-supervised nerf: Fewer
views and faster training for free.” In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2022, pp. 12882–12891.

[Eri+21] D. Eriksson, P. I.-J. Chuang, S. Daulton, P. Xia, A. Shrivastava, A. Babu,
S. Zhao, A. Aly, G. Venkatesh, and M. Balandat. “Latency-aware neural
architecture search with multi-objective bayesian optimization.” In: arXiv
preprint arXiv:2106.11890 (2021).

[Fin09] T. Finch. “Incremental calculation of weighted mean and variance.” In:
University of Cambridge 4.11-5 (2009), pp. 41–42.

[Gal+16] Y. Gal et al. “Uncertainty in deep learning.” In: (2016).

[Gao+22] K. Gao, Y. Gao, H. He, D. Lu, L. Xu, and J. Li. “Nerf: Neural radiance field
in 3d vision, a comprehensive review.” In: arXiv preprint arXiv:2210.00379
(2022).

94

https://doi.org/https://doi.org/10.1016/S0922-3487(00)80044-1
https://www.sciencedirect.com/science/article/pii/S0922348700800441
https://www.sciencedirect.com/science/article/pii/S0922348700800441

Bibliography

[Gar+21] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin. “Fastnerf:
High-fidelity neural rendering at 200fps.” In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021, pp. 14346–14355.

[Gom+19] A. N. Gomez, I. Zhang, S. R. Kamalakara, D. Madaan, K. Swersky, Y. Gal,
and G. E. Hinton. “Learning sparse networks using targeted dropout.” In:
arXiv preprint arXiv:1905.13678 (2019).

[Gon+14] Y. Gong, L. Liu, M. Yang, and L. Bourdev. “Compressing deep convolutional
networks using vector quantization.” In: arXiv preprint arXiv:1412.6115
(2014).

[Han+20] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu. “Ghostnet: More
features from cheap operations.” In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2020, pp. 1580–1589.

[He+16] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image
recognition.” In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 770–778.

[Hin+12] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov. “Improving neural networks by preventing co-adaptation of feature
detectors.” In: arXiv preprint arXiv:1207.0580 (2012).

[HJ11] C. D. Hansen and C. R. Johnson. Visualization Handbook. Academic Press,
2011.

[HMD15] S. Han, H. Mao, and W. J. Dally. “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.”
In: arXiv preprint arXiv:1510.00149 (2015).

[HMG18] J. Hron, A. Matthews, and Z. Ghahramani. “Variational Bayesian dropout:
pitfalls and fixes.” In: International Conference on Machine Learning. PMLR.
2018, pp. 2019–2028.

[HVD15] G. Hinton, O. Vinyals, and J. Dean. “Distilling the knowledge in a neural
network.” In: arXiv preprint arXiv:1503.02531 (2015).

[HWW22] K. Höhlein, S. Weiss, and R. Westermann. “Evaluation of Volume Repre-
sentation Networks for Meteorological Ensemble Compression.” In: (2022).

[Jos+22] L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun. “Hands-
on Bayesian neural networks—A tutorial for deep learning users.” In: IEEE
Computational Intelligence Magazine 17.2 (2022), pp. 29–48.

95

Bibliography

[KA01] T. Kim and T. Adali. “Approximation by fully complex MLP using ele-
mentary transcendental activation functions.” In: Neural Networks for Signal
Processing XI: Proceedings of the 2001 IEEE Signal Processing Society Workshop
(IEEE Cat. No. 01TH8584). IEEE. 2001, pp. 203–212.

[Kan+18] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. P. Xing.
“Neural architecture search with bayesian optimisation and optimal trans-
port.” In: Advances in neural information processing systems 31 (2018).

[KB14] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization.” In:
arXiv preprint arXiv:1412.6980 (2014).

[KSW15] D. P. Kingma, T. Salimans, and M. Welling. “Variational dropout and the
local reparameterization trick.” In: Advances in neural information processing
systems 28 (2015).

[Lak+13] S. Lakshminarasimhan, N. Shah, S. Ethier, S.-H. Ku, C.-S. Chang, S. Klasky,
R. Latham, R. Ross, and N. F. Samatova. “ISABELA for effective in situ
compression of scientific data.” In: Concurrency and Computation: Practice
and Experience 25.4 (2013), pp. 524–540.

[LC87] W. E. Lorensen and H. E. Cline. “Marching cubes: A high resolution 3D
surface construction algorithm.” In: ACM siggraph computer graphics 21.4
(1987), pp. 163–169.

[Le+22] H. Le, R. K. Høier, C.-T. Lin, and C. Zach. “AdaSTE: An Adaptive Straight-
Through Estimator to Train Binary Neural Networks.” In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp. 460–469.

[Lec+18] G. Leclerc, M. Vartak, R. C. Fernandez, T. Kraska, and S. Madden. “Smallify:
Learning network size while training.” In: arXiv preprint arXiv:1806.03723
(2018).

[Li+08] Li, Perlman, Wan, Yang, Meneveau, Burns, Chen, Szalay, and Eyink. “A
public turbulence database cluster and applications to study Lagrangian
evolution of velocity increments in turbulence.” In: Journal of Turbulence
9.31 (2008), pp. 524–540.

[Li+18] S. Li, N. Marsaglia, C. Garth, J. Woodring, J. Clyne, and H. Childs. “Data
reduction techniques for simulation, visualization and data analysis.” In:
Computer graphics forum. Vol. 37. 6. Wiley Online Library. 2018, pp. 422–447.

[Lin14] P. Lindstrom. “Fixed-rate compressed floating-point arrays.” In: IEEE trans-
actions on visualization and computer graphics 20.12 (2014), pp. 2674–2683.

96

Bibliography

[LL16] V. Lebedev and V. Lempitsky. “Fast convnets using group-wise brain
damage.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2016, pp. 2554–2564.

[LSV19] A. Labach, H. Salehinejad, and S. Valaee. “Survey of dropout methods for
deep neural networks.” In: arXiv preprint arXiv:1904.13310 (2019).

[Lu+21] Y. Lu, K. Jiang, J. A. Levine, and M. Berger. “Compressive neural represen-
tations of volumetric scalar fields.” In: Computer Graphics Forum. Vol. 40. 3.
Wiley Online Library. 2021, pp. 135–146.

[LW16] C. Louizos and M. Welling. “Structured and efficient variational deep
learning with matrix gaussian posteriors.” In: International conference on
machine learning. PMLR. 2016, pp. 1708–1716.

[Mar+21] J. N. Martel, D. B. Lindell, C. Z. Lin, E. R. Chan, M. Monteiro, and G.
Wetzstein. “Acorn: Adaptive coordinate networks for neural scene repre-
sentation.” In: arXiv preprint arXiv:2105.02788 (2021).

[MAV17] D. Molchanov, A. Ashukha, and D. Vetrov. “Variational dropout sparsifies
deep neural networks.” In: International Conference on Machine Learning.
PMLR. 2017, pp. 2498–2507.

[Mes+19] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger.
“Occupancy networks: Learning 3d reconstruction in function space.”
In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019, pp. 4460–4470.

[Mil+20] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and
R. Ng. “Nerf: Representing scenes as neural radiance fields for view syn-
thesis.” In: European conference on computer vision. Springer. 2020, pp. 405–
421.

[Mül+22] T. Müller, A. Evans, C. Schied, and A. Keller. “Instant neural graph-
ics primitives with a multiresolution hash encoding.” In: arXiv preprint
arXiv:2201.05989 (2022).

[Nec04] M. Nechyba. “Introduction to the discrete wavelet transform (DWT).” In:
University of Florida, February (2004).

[Nek+17] K. Neklyudov, D. Molchanov, A. Ashukha, and D. P. Vetrov. “Structured
bayesian pruning via log-normal multiplicative noise.” In: Advances in
Neural Information Processing Systems 30 (2017).

[Ngu+21] S. Nguyen, D. Nguyen, K. Nguyen, K. Than, H. Bui, and N. Ho. “Structured
dropout variational inference for Bayesian neural networks.” In: Advances
in Neural Information Processing Systems 34 (2021), pp. 15188–15202.

97

Bibliography

[Par+19] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. “Deepsdf:
Learning continuous signed distance functions for shape representation.”
In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019, pp. 165–174.

[Rah+19] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y.
Bengio, and A. Courville. “On the spectral bias of neural networks.” In:
International Conference on Machine Learning. PMLR. 2019, pp. 5301–5310.

[Rea+17] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and
A. Kurakin. “Large-scale evolution of image classifiers.” In: International
Conference on Machine Learning. PMLR. 2017, pp. 2902–2911.

[Ren+21] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang.
“A comprehensive survey of neural architecture search: Challenges and
solutions.” In: ACM Computing Surveys (CSUR) 54.4 (2021), pp. 1–34.

[Rho+22] D. Rho, B. Lee, S. Nam, J. C. Lee, J. H. Ko, and E. Park. “Masked Wavelet
Representation for Compact Neural Radiance Fields.” In: arXiv preprint
arXiv:2212.09069 (2022).

[Rom+14] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio.
“Fitnets: Hints for thin deep nets.” In: arXiv preprint arXiv:1412.6550 (2014).

[Ron+19] B. Ronen, D. Jacobs, Y. Kasten, and S. Kritchman. “The convergence rate
of neural networks for learned functions of different frequencies.” In:
Advances in Neural Information Processing Systems 32 (2019).

[Sai+13] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran.
“Low-rank matrix factorization for deep neural network training with
high-dimensional output targets.” In: 2013 IEEE international conference on
acoustics, speech and signal processing. IEEE. 2013, pp. 6655–6659.

[SF+00] M. Sonka, J. M. Fitzpatrick, et al. “Handbook of medical imaging. Volume
2, Medical image processing and analysis.” In: SPIE. 2000.

[SF03] R. S. Stanković and B. J. Falkowski. “The Haar wavelet transform: its
status and achievements.” In: Computers & Electrical Engineering 29.1 (2003),
pp. 25–44.

[Sit+20] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. “Implicit
neural representations with periodic activation functions.” In: Advances in
Neural Information Processing Systems 33 (2020), pp. 7462–7473.

[Sri+14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
“Dropout: a simple way to prevent neural networks from overfitting.” In:
The journal of machine learning research 15.1 (2014), pp. 1929–1958.

98

Bibliography

[Sun+18] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and R. Ashmore. “Testing
deep neural networks.” In: arXiv preprint arXiv:1803.04792 (2018).

[SV19] H. Salehinejad and S. Valaee. “Ising-dropout: A regularization method
for training and compression of deep neural networks.” In: ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2019, pp. 3602–3606.

[SZW19] V. Sitzmann, M. Zollhöfer, and G. Wetzstein. “Scene representation net-
works: Continuous 3d-structure-aware neural scene representations.” In:
Advances in Neural Information Processing Systems 32 (2019).

[Tak+21] T. Takikawa, J. Litalien, K. Yin, K. Kreis, C. Loop, D. Nowrouzezahrai, A.
Jacobson, M. McGuire, and S. Fidler. “Neural geometric level of detail: Real-
time rendering with implicit 3D shapes.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, pp. 11358–11367.

[TM02] D. S. Taubman and M. W. Marcellin. “JPEG2000: Standard for interactive
imaging.” In: Proceedings of the IEEE 90.8 (2002), pp. 1336–1357.

[TST20] M. Tomczak, S. Swaroop, and R. Turner. “Efficient low rank gaussian
variational inference for neural networks.” In: Advances in Neural Information
Processing Systems 33 (2020), pp. 4610–4622.

[VBU07] C. Vonesch, T. Blu, and M. Unser. “Generalized Daubechies wavelet fami-
lies.” In: IEEE Transactions on Signal Processing 55.9 (2007), pp. 4415–4429.

[WHW22] S. Weiss, P. Hermüller, and R. Westermann. “Fast neural representations
for direct volume rendering.” In: Computer Graphics Forum. Vol. 41. 6. Wiley
Online Library. 2022, pp. 196–211.

[WM13] S. Wang and C. Manning. “Fast dropout training.” In: international conference
on machine learning. PMLR. 2013, pp. 118–126.

[Wur+21] S. W. Wurster, H.-W. Shen, H. Guo, T. Peterka, M. Raj, and J. Xu. “Deep hi-
erarchical super-resolution for scientific data reduction and visualization.”
In: arXiv preprint arXiv:2107.00462 (2021).

[Xie+22] Y. Xie, T. Takikawa, S. Saito, O. Litany, S. Yan, N. Khan, F. Tombari, J.
Tompkin, V. Sitzmann, and S. Sridhar. “Neural fields in visual computing
and beyond.” In: Computer Graphics Forum. Vol. 41. 2. Wiley Online Library.
2022, pp. 641–676.

[Yan+22] R. Yang, T. Xiao, Y. Cheng, J. Suo, and Q. Dai. “TINC: Tree-structured
Implicit Neural Compression.” In: arXiv preprint arXiv:2211.06689 (2022).

99

Bibliography

[Yu+21] A. Yu, V. Ye, M. Tancik, and A. Kanazawa. “pixelnerf: Neural radiance
fields from one or few images.” In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021, pp. 4578–4587.

[ZB21] F. Zhang and D. R. Bull. Intelligent image and video compression: communicat-
ing pictures. Academic Press, 2021.

[Zho+17] Z. Zhou, Y. Hou, Q. Wang, G. Chen, J. Lu, Y. Tao, and H. Lin. “Volume up-
scaling with convolutional neural networks.” In: Proceedings of the Computer
Graphics International Conference. 2017, pp. 1–6.

100

	Acknowledgments
	Abstract
	Contents
	Introduction
	Preliminaries
	Scientific Volumetic Data
	Compression Techniques for Scientific Data
	TTHRESH
	Quantization
	Wavelet Transform

	Neural Networks
	Neurcomp
	fv-SRN

	Pruning of Neural Networks
	Trainable Masking
	Smallify
	Variational Dropout

	Neural Architecture Search

	Related Work
	Scene Representation Networks
	Compressive Scene Representation Networks

	Compression of Deep Neural Networks
	Neural Network Pruning

	Implementation Details
	Neurcomp
	Pruning Methods

	fv-SRN
	Pruning Methods

	Experiments
	Experiment Setup
	Classical compression baseline
	Pruning on Neurcomp
	Pruning on fv-SRN
	Influence of Wavelet Transform on Pruning

	Discussion
	Effects of Pruning on Neurcomp
	Effects of Pruning in fv-SRN
	Comparison of Pruning on Neurcomp and fv-SRN

	Conclusion
	Figures
	Pruning With and Without Quantization
	Rendering of Data Sets

	List of Figures
	List of Tables
	Glossary
	Acronyms
	Bibliography

