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Abstract

Depth-supervised NeRF (DSNeRF) [3] is a state of the
art deep neural network method for implicit 3D scenes rep-
resentation from multi-view inputs.
Recent research has show that passing input points through
high-frequency functions before feeding the data to the
network enables the network to accurately depict high-
frequency regions of a scene. We investigate the perfor-
mance of different such embeddings on the quality of the
final output. Specifically, we analyse gaussian fourier fea-
ture mappings [11], and approaches that leverage periodic
activation functions like SIREN [10] and SINONE [2]. Fur-
thermore, we want to examine the possibility to enhance
DSNeRF’s real time capabilities by implementing the con-
cepts of FastNeRF [4]. We achieve a GPU accelerated real-
time interactive implementation. The overall goal is to pro-
duce a DSNeRF based application that is more applicable
to real world use by trying to get closer to realtime render-
ing performance, achieving higher quality reconstruction of
difficult scenes and needing less viewpoints.

1. Introduction
Neural networks that learn to implicitly capture com-

plex 3D scenes with the weights of the network are a pow-
erful tool to significantly lower memory requirements of
such scene representations and to synthesize novel views
of the scene from a sparse set of training images. NeRF [6]
is a state-of-the-art deep learning approach for represent-
ing static scenes as a 5D function learned by a neural net-
work. The network is trained with a set of input images
with known camera poses and outputs the volume den-
sity and view dependent emitted radiance at each position
p = (x, y, z) for each viewing direction d = (θ,Φ). Novel
views are synthesized by evaluating the network along rays
for each pixel. With the help of volume rendering tech-
niques the generated density and radiance values along the
rays are then combined to a final 2D image. While the
NeRF architecture produces impressive results, it’s useful-
ness for real life applications is held back by it’s depen-
dency on a large amount of input images for training the net-
work, as well as the long training time required to produce

high quality renderings. DSNeRF [3] is an extension to the
original NeRF network that seeks to address these short-
comings and results in a network architecture that trains 2-3
times faster and produces better rendering results for fewer
input views than the original NeRF. The authors of DSNeRF
reason that the standard volume rendering used by NeRF to
produce the novel views does not respect the general sparse-
ness of real life scenes. As a result the network is prone
to fitting to incorrect geometries and does not evaluate the
rays at meaningful positions, given too few input images.
As a solution they introduce an additional loss that incorpo-
rates depth-data into the network. As NeRF already requires
input images with known poses, this additional depth data
can easily be generated by SFM approaches. The additional
depth loss thereby already solves the 3D correspondence
matching problem that NeRF would otherwise implicitly
have to solve and encourages the ray termination distribu-
tions to respect the given surface priors.
We are interested in investigating approaches that can fur-
ther improve the rendering quality of DSNerf. Recent work
by Tancik et al [11] suggests that different approaches of
embedding the input of the network to a higher dimensional
domain enables the network to better fit to higher frequency
components of the training data, which results in sharper
and higher quality renderings. Furthermore, periodic activa-
tion functions, coupled with careful initialization for stable
optimization, have been recently shown to outperform more
advanced deep learning architectures on image reconstruc-
tion tasks. To this end, we are also interested in analysing
possible benefits from combining different input embedding
techniques, as well as the SIREN [10] and SINONE [2] ar-
chitectures with DSNeRF.
Another problem of the NeRF method is it’s high com-
putational requirement and as such slow rendering time,
which makes it infeasible to use the network for interac-
tive realtime applications. The cause for NeRF’s long ren-
der times lies in it’s volumetric scene representation. In
order to render a single image, each ray has to be evalu-
ated multiple times at different positions, which amounts
to 100s of network calls for a single pixel. Several ap-
proaches [12], [5], [8] solve this problem, but introduce big-
ger changes on the existing architecture and provide openly
available implementations. FastNeRF [4] tackles this is-



sue by introducing a method to efficiently cache and query
scene radiances with view directions, which omits the need
for constant network calls and produces a rendering algo-
rithm that is three magnitudes faster than the original NeRF,
without sacrificing quality. As to our knowledge no open
source implementation of FastNeRF exists, we want to im-
plement and analyse the proposed network architecture first
hand in regard to it’s realtime capabilities when combined
with DSNeRF.

2. Embedding
Basri et al. [9] as well as Rahaman et al. [7] show that

neural networks are biased to learn lower frequency func-
tions easier than higher frequency functions. This leads the
network to first fit to the low frequency components of the
target function, and then to the higher frequency parts. If
data is missing, the Network as such interpolates with a
low-frequency function instead of a more straightforward
and smoother curve that would introduce higher frequency
components. Consequently, most scene representation net-
works, such as NeRF, result in renderings that only poorly
capture high frequency variation in color and geometry. To
counteract this issue, the authors of the original NeRF al-
gorithm [6] propose to leverage high frequency functions to
map the original input to a higher dimensional space before
passing it to the network. The authors point out that this
mapping increases computation time, but also enables the
network to better fit to higher frequency components of the
data and significantly increases rendering quality (See Fig-
ure 1).
In the following paragraph we want to compare different
approaches to such embeddings and their influence on the
output quality of DSNeRF.

2.1. Theoretical Background of Embeddings

Fourier Features. Tancik et al. [11] present the idea to
pass the raw network input through a Fourier feature map-
ping γ to featurize the input and enhance convergence speed
and generalization ability of the neural network. The func-
tion γ enables the network to learn high frequency functions
in low dimensional space by applying a set of sinusoids to
the input points.
We focus on comparing the following Fourier feature map-
pings:

1. Positional encoding of the original NeRF algo-
rithm to be compared as a baseline: γ(v) =
[sin(20πv), cos(20πv), ..., sin(2L−1πv), cos(2L−1πv)]
, with the hyperparameter L describing the number of
featurizing frequencies.

2. Gaussian Mapping by Tancik et al. [11]: γ(v) =
[sin(2πBv), cos(2πBv)] , where B ∈ Rm×d is sam-
pled from N (0, σ2) with a Gaussian distribution.

SIREN. Sitzmann and Martel [10] discuss limitations of
implicit scene representation networks that build on tradi-
tional ReLU-based multilayer perceptrons (MLPs). They
show that these architectures fail to represent a signal’s
higher order derivatives and lack the capacity to capture fine
details. The authors instead propose to leverage periodic ac-
tivation functions and create the new SIREN network archi-
tecture. The usage of periodic activation functions enables
this network to fit images significantly faster and with more
detail than ReLU-based networks without preprocessing of
the data. The proposed SIREN architecture utilizes sine ac-
tivation functions together with MLPs:

Φi(vi) = sin(ωiWivi + bi) (1)

, where Φi is the i-th layer, the weights and biases Wi and
bi are initialized with a standard normal distribution and ωi

serves as a scale hyperparameter that increases the spatial
frequency of the first layer to better match the frequency
spectrum of the signal.

SINONE. SINONE [2] is a neural network for implicit
scene representations that can be understood as an exten-
sion to the SIREN architecture. The authors show that this
alternative network architecture offers a more numerically
stable version with similar convergence properties as the
ReLU-based MLP with Fourier features for image recon-
struction tasks, while omitting preprocessing of the data and
thereby saving computational costs. The SINONE architec-
ture consists of a combination of ReLU- and Sigmoid-based
MLPs. The first layer copies a sine-based periodic activa-
tion function as in SIREN, in order to enable the network to
reliably capture the high frequency components of the input
and produce outputs with fine detail:

Φ1(v1) = sin(ω1W1v1 + b1)

Φi(vi) = ReLU(Wivi + bi)

Φk(vk) = Sigmoid(Wkvk + bk)

(2)

, with i = 2, ..., k − 1 for k layers.

2.2. Experiments

We compare the output quality of DSNeRF when cou-
pled with different embedding strategies. To this end we
analyse the raw visual output as well as the calculated peak
signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) of each experimental run. Table 1 compares the
different mappings on a real world (Horns) and 2 synthetic
(Lego, Hotdog) data sets. Each experiment was trained for
50000 iterations and the number and size of the layers of the
DSNeRF network was not changed between runs. Though
with different mappings the embedded size of the input and
overall network architecture varies between runs. The opti-
mal choice of the scale hyperparameter for the scaled Gauss



(a) Ground Truth (b) Positional Encoding (c) No Embedding

Figure 1. Comparison of rendering quality of DSNeRF for Horns scene when embedding the input with Positional Encoding or using no
input embedding. In both cases DSNeRF was trained for 50000 iterations with five training images. As demonstrated by Tancik et al [11],
the network produces blurry images without the use of prior input embeddings, whereas the network is able to produce sharp renderings
that accurately depict even higher frequency details of the scene when coupled with an embedding technique. .

Mapping differs for varying data sets and was determined
with the help of hyperparameter search.

Fourier Features. One can notice that for both the
Positional- and Gauss Encoding a larger embedding and as
such a larger input feature vector size correspond to a better
rendering output, as indicated by a larger PSNR and SSIM.
However, this quality increase comes at a higher computa-
tional and memory cost when applying the embedding.

The Gauss Mapping achieves the best results for each
data set among the tested embedding methods. The quality
of the Gauss Mapping can be further increased by intro-
ducing an additional scale hyperparameter that is applied to
the gaussian matrix B. Compared to Positional Encoding
with similar embedding size, the scaled version of the
Gauss Mapping increases the achieved PSNR by 0.4 and
the SSIM by 0.25 points for the horns data set. Although
the Positional Encoding and Gauss Mapping are only
marginally different with respect to the PSNR and SSIM
metrics, both embedding methods produce distinct render-
ing outputs (Figure 2). While the output of the Positional
Encoding generates sharp images that depict even the finer
details of the training data, the Gauss Mapping constructs
smoothed renderings, that contain less artifacts and bet-
ter preserve the shape of objects, as can be seen in Figure 3.

SIREN. The SIREN network performs the worst from
all experimental embeddings. The reached PSNR and
SSIM are considerable lower than those achieved by the
Fourier features embedding or by the SINONE network.
Moreover, the rendered 2D image does not resemble
the training scene, like the outputs of the SINONE or
Fourier features embeddings (Figure 2). The strong loss-
oscillations of SIREN during training (Figure 4) suggest
that the SIREN network is highly unstable in combination
with DSNeRF. Although the SIREN network performs
well for the image reconstruction experiments done in the

paper of Sitzmann and Martel and possesses good image
memorizing capabilities, we thus conclude that the SIREN
architecture is poorly suited for the task of inducing novel
views of learned scenes.

SINONE. The SINONE architecture performs better
than SIREN and achieves comparable results in PSNR and
SSIM to the basic Positional Encoding and Gauss Mapping.
However, the rendered output of the SINONE network is
blurrier than the outputs of the Gauss- and Positional En-
coding (Figure 2), which results in overall worse PSNR
and SSIM scores. The reason for this drop in quality might
lie in the approach of the SINONE network to mimic the
high frequency embedding of the Fourier feature mappings
with just a singular SIN-layer. The weights of the SIN-layer
are supposed to map the input to a higher dimensional fea-
ture vector, similar to the different frequencies in the Fourier
features embedding. But, compared to the fixed frequency
bands in the Fourier features, the SIN-layer is trained at the
same time with the rest of the network and is as such harder
to control when tasked to produce high quality renderings
with DSNeRF’s volume rendering. Although the output
quality is enhanced compared to the experiment with no
embedding techniques at all, the SINONE network cannot
achieve a similar embedding quality as the Fourier feature
mapping techniques, which leads to a blurrier rendering and
lower PSNR and SSIM scores.

3. FastNeRF

FastNeRF [4] fits well together with other changes to
the original NeRF network, such as DSNeRF [3], which we
utilize as an implementation base. We modify the existing
network by separating the direction and position dependent
MLPs.

The traditional NeRF network architecture is split into
two parts, position- and viewing direction-dependent net-



work as described in Figure 5. Instead of five-dimensional
input, a pair of 3D (positional) and 2D (view-dependent)
inputs is required. This network architecture simply re-
places the baseline DSNeRF network while achieving iden-
tical results. In order to obtain the desired speedup at ren-
der time, the network needs to be cached. A cache reso-
lution s is specified and the positional input is stored in a
three-dimensional cache, whereas the viewdirection input
is stored via polar-coordinates in a two-dimensional cache.
The latter is generated by sampling the two angles θ ∈ [0, π]
and φ ∈ [0, 2π] and converting them to unit-vectors, which
are then used as input for the view-dependent network. The
network creates four float32 scalars per viewdirection in-
put, one for each of the four cache layers. The output is
then saved in a binary file. For the purpose of sampling the
positional data, a bounding box in x-, y- and z-direction
is created. Along each dimension of the bounding box,
s samples are taken after which all possible combinations
of those three dimensions are queried in the positional net-
work. Each positional input creates 4∗3 outputs, each cache
layer thus has one value for u, v, and w. The output is then
saved into three files, each containing four float32 values
per input. Additionally the density output is also stored in a
single cache file, here one float32 value is mapped to each
positional input.

Our interactive NeRF renderer is an extension of a stan-
dard volume renderer [1]. First, the opacity, u, v, w and
direction sample caches are saved as data buffers from the
binary output files of the cache generation routine. The
opacity data is transferred to the GPU as CUDA 3D float
texture. We choose 4 as a constant for the component size
of the deep radiance map, as this is a good trade off of qual-
ity and cache size, according to the original FastNeRF pa-
per. This also has the advantage that we are able to utilize
CUDA supported 3D float4 textures; the unweighted rgb
equivalents uvw are thus loaded in one texture each. The
view cache is loaded as 2D float4 texture, similarly to rgba
textures.

Rendering is handled via a CUDA kernel of the camera
per pixel rays. Each ray steps through the dense volume
grid and accumulates color and opacity along the ray in a
front-to-back fashion. In order to sample the rgb value of a
NeRF cache grid position the uvw 3D texures are accessed
and weighted component-wise with the 2D texture view de-
pendent weights. This is achieved by utilizing dot products.
To move into the right color space a sigmoid is applied to
the rgb values.

We compare performance for two different resolutions.
Both fit into our test GPU’s RTX2080 8GB VRAM. Gener-
ally performance is above 30 fps, with res 256 we manage
to reach around 175 fps in the lego scene.

Visual quality is according to the chosen grid resolution,
as in [4] higher resolutions are closer to the ground truth.

Our implementation also supports optional hardware trilin-
ear interpolation for all texture sampling. Figure 6 and fig-
ure 7 show examples of the application.

4. Discussion

We compare the quality of different embedding tech-
niques on the DSNeRF network. On our experiments the
Gauss Mapping surpasses the Positional Encoding that was
used in the original DSNeRF network. The multiplication
of the random sampled Gauss matrix with the input points
produces a smooth rendering result that contains less arti-
facts and is able to contain the general shape of the scene
objects better than the Positional Encoding. The SIREN
and SINONE network architectures try to mimic the em-
bedding of the Fourier feature mappings by introducing pe-
riodic activation functions to the network. Consequently,
these techniques safe computational power by not having to
map the input to a higher frequency domain prior to feed-
ing the input to the neural network. While this approach
works well on 2D image-completion tasks, our experiments
show that the inserted sin-activation layers behave unstable
during training when coupled with DSNeRF’s 3D volume
rendering to generate novel image views and do not fit to
the training scene’s higher frequency components as well
as the Fourier Feature mappings.
We implement the FastNeRF architecture and build an inter-
active NeRF rendering application with GPU acceleration.
It could be extended further to also support octree structures
to make higher res cache rendering more feasible.
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Table 1. Experiment runs to compare the quality of different embedding techniques on the DSNeRF network. The experiments were run
on three different data sets, with 50000 training iterations each. The Horns data set is captured from real world objects, while the Lego
and Hotdog data sets are synthetic. The Embedded Size consists of the summation of the size of the position and view feature vector after
applying an embedding. Across all data sets, the Scaled Gauss Embedding performs the best in regard to the PSNR and SSIM metrics.

Dataset Run PSNR SSIM Embedded Size

Horns No Embedding 20,5 0,517 131 + 131
Positional Encoding 23,6 0,587 63 + 27
Positional Encoding 23,6 0,620 131 + 131
Positional Encoding 23,9 0,627 387 + 387
Gauss 23,5 0,608 67 + 67
Gauss 23,7 0,614 131 + 131
Gauss 23,8 0,616 259 + 259
Gauss Scaled 24,0 0,645 131 + 131
SIREN 14,4 0,141 3 + 3
SINONE 21,9 0,576 3 + 3

Lego Positional Encoding 24,9 0,861 131 + 131
Gauss Scaled 25,6 0,881 131 + 131

Hotdog Positional Encoding 29,4 0,940 131 + 131
Gauss Scaled 30,1 0,945 131 + 131



(a) Positional Encoding (b) Gauss Mapping

(c) SIREN (d) SINONE

Figure 2. Comparison of rendering outputs for the real world Horns scene when using different embedding approaches on DSNeRF. In
all cases DSNeRF was trained for 50000 iterations with five images. For the Positional Encoding and Gauss Mapping, 131 features are
used for the input position and views after applying the mapping. The SIREN and SINONE networks mimic the embedding with their use
of a periodic activation function and do not use an input embedding. The basic Positional Encoding produces sharp renderings, while the
Gauss Mapping creates a smoothed version that contains less artifacts. The SIREN network is unable to render the details of the test scene
with DSNeRF’s volume rendering. In contrast, SINONE renders a comparable, but blurrier version of the Positional- and Gauss Encoding
output.



(a) Positional Encoding (b) Gauss Mapping

Figure 3. Comparison of rendering outputs for the synthetic Hotdog scene when using standard Positional Encoding and Gauss Mapping
on DSNeRF. In both cases DSNeRF was trained for 50000 iterations with five images and uses 131 features for the input position and views
after applying the mapping. Especially when looking at the edge of the plate, one can see that the the Gauss Mapping produces smoothed
renderings that contain less artifacts than the Positional Encoding.

Figure 4. Comparing the training of the original DSNeRF with Positional Encoding (green) and DSNeRF with SIREN (gray) on the Horns
data set for 50000 iterations, with the number of iterations on the x-axis and the training loss on the y-axis. The Positional Encoding
approach follows a smooth training curve that suggests correct fitting to the training data. In contrast the SIREN network behaves unstable
during training with a training curve that has large oscillations and larger loss values.



Figure 5. The main difference between the traditional NeRF architecture and the one of FastNeRF lies in the separation of positional and
view-dependent network layers.

Figure 6. The Horns scene at res 256, note that the volume is small thus you can’t see the stairs and background.



Figure 7. The Lego scene at res 256, note that this model has not been trained very long.
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