
Seminar 3D Vision: PointNet
MAARTEN BUSSLER, Technische Universität München, Germany

Efficient semantic segmentation and classification algorithms are an im-
portant aspect of computer vision. These algorithms work on 3D data and
can perceive and interpret the surroundings of a scene, which is crucial to
the fields of autonomous driving, virtual reality or indoor navigation. With
modern advancements in sensor technology and computational power, it is
today possible to apply deep learning techniques on these 3D data specific
tasks. Point clouds is a versatile data format that is especially important
for the field of autonomous driving. Because of their irregular structure,
point clouds are notoriously hard to handle for neural networks and are
thus often converted into regular and more voluminous representations like
voxel grids. This, however, limits the size of the analyzable data and exposes
the input data to quantization errors. This paper aims to give an overview
of the PointNet architecture by Qi et. al. [7], a highly versatile and efficient
deep learning network that works directly on points clouds without the
need of previous data format transformations and forms the basis for many
modern state of the art algorithms on 3D data classification and segmen-
tation. Furthermore, this paper discusses different areas of application for
PointNet, but also limitations and advancements of the original PointNet
architecture.

1 INTRODUCTION
3D object detection and scene segmentation tasks are essential for
the success of many real-world applications, such as virtual reality,
robotics or autonomous driving. In order to track objects and per-
ceive surroundings in real time, these applications rely on several
3D sensors, such as LIDAR or depth sensors that produce large
data sets in the form of irregular point clouds [12]. With respect
to these technological challenges and backed by new advances in
applying deep learning methods for computer vision tasks, recent
research efforts have investigated how deep learning and neural
networks could be applied to 3D geometric data. The efficiency and
success of many deep learning object detection methods, such as
2D or 3D convolutional neural networks, rely on highly regular and
structured underlying data. Since most initial sensor data in the
form of point clouds or 3D meshes do not offer a regular format,
numerous algorithms first transform these original data formats to
structured formats, such as 3D voxel grids, prior to consuming them
by a neural network. However, transformation tasks on the initial
data bears the risk of introducing quantization errors and renders
the resulting data unnecessarily voluminous, which can pose a big
obstacle for handling large data sets. In order to perform fast and
reliable object detection and semantic segmentation in real time, the
industry requires a way to perform deep learning directly on the
output point clouds of the 3D sensors. Point clouds consist of a set
of points that are defined in 3D space by their (x ,y, z) components.
While these point clouds are very exact representations of the orig-
inal sensor data, the single points in the set possess no inherent
ordering and the cloud is invariant to the permutations of the points,
which makes it difficult to build a learning-based algorithm purely
on point clouds.
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Qi et al. propose a solution for this problem by introducing Point-
Net [7]. PointNet is a neural network structure that directly con-
sumes point clouds and offers a structured and learnable representa-
tion of point clouds that can be used for 3D object classification and
segmentation tasks. Essential for the success of the PointNet net-
work is the usage of a max pooling function in order to counter the
irregular structure of the point cloud. In its initial steps the network
extracts per point features out of the point cloud and learns a spatial
encoding of each point. Subsequently, a max pooling operator se-
lects the dominant points of the point cloud and aggregates the per
point features to a global feature descriptor that describes the whole
point cloud. Eventually, the global feature descriptor can be fed to a
classifier network that then produces labels for object classification,
part segmentation or scene semantic segmentation tasks, as seen in
Figure 1. Furthermore the authors introduce alignment networks to
the PointNet structure in order to canonicalize the input and feature
data and further improve the network performance.
This paper is structured as follows: First related research and the
importance of point clouds as a data structure are discussed. Then
the architecture and properties of the PointNet neural network are
presented. Lastly, the influence of PointNet to modern research
methods are reviewed.

Fig. 1. Utilization of PointNet. PointNet works directly on point clouds and
can be used to produce labels for object classification, as well as semantic
segmentation tasks. Taken from [7].

2 RELATED WORK
Point clouds are very exact and are often captured directly from LI-
DAR or depth sensors. As such their handling is especially important
for the fields of autonomous driving and virtual reality. However,
the irregularity of point clouds poses a nontrivial problem for point
cloud-based 3D object detection and segmentation algorithms. Many
existing algorithms try to overcome these challenges by either pro-
jecting the point clouds to 2D images [6], [13] or use quantization to
convert the clouds to regular voxel grids [8], [15]. Subsequently, the
efficiency of convolutional networks and 2D detection frameworks
can be leveraged. This data representation transformation, however,
is not optimal and bears the risks to lose information during quan-
tization, to obscure natural invariances of the original data and to
render the resulting data unnecessarily voluminous. Instead of first



transforming point cloud data to voxels or other regular data for-
mats for feature learning, PointNet directly consumes point clouds
in order to perform point cloud classification and segmentation.

2.1 Geometric Data Structures
The visualization and handling of 3D geometric data is a central
part of the field of computer vision and multiple modern real life
applications. 3D data is highly versatile and can be accessed in vari-
ous different formats, with some of the most prominent structures
being point clouds, 3D meshes or voxel grids. Each format poses
unique opportunities and challenges when applied to deep learning
algorithms. Voxel grids are highly structured and easy to process
for a neural networks, but their memory footprint also grows cu-
bically with their input resolution [1]. 3D meshes encode not only

geometry but also topology data and excel at the compact repre-
sentation of 3D shapes. However, their non-canonical and irregular
structure make even simpler image operations a highly non-trivial
task [10], which makes it hard to use meshes for training of neural
networks. Point clouds are another irregular data structure. This
data format represents an object or a scene by a set of unstructured
3D points that are defined by their (x ,y, z) components. Although
point clouds are a very exact and easy to render data format, they
usually perform bad for deep learning related tasks. This is because
point clouds possess no canonical ordering, as such the ordering of
the points within the cloud is not defined. Thus, a neural network
has to be invariant to N ! permutations as well as possible rotations
and transformations of the input set in order to work directly on
point clouds.

Fig. 2. Pipeline of PointNet. The network takes all n points of the input set and their properties directly as input and performs pose normalization before
using multi-layered perceptrons to extract local features from the singular points. The resulting feature space is again aligned with the help of a second
transformation network. A max pooling operation then selects the most relevant points of the input to form a global feature vector that describes the whole
point cloud. For classification tasks, this global feature descriptor is then fed to a classification network that produces k output scores for k candidate classes.
For segmentation tasks, the global and local per point feature information are combined to produce for each input pointm output scores form parts of the
object. Taken from [7].

3 ARCHITECTURE OF POINTNET
Figure 2 depicts an overview of the full PointNet structure. The
network consists of three main components:

(1) A single symmetric function that aggregates extracted per
point features to a global feature descriptor, which encapsu-
lates the whole input point cloud.

(2) Transformation networks that canonicalize input and feature
spaces.

(3) An optional segmentation network that combines local and
global semantic information.

The following paragraphs discuss the structure of PointNet in more
detail.

3.1 Symmetric Function
In order to deploy a successful neural networks that works directly
on point clouds, the authors of PointNet have to introduce struc-
ture to the original unstructured input data. This is done with the
help of a single symmetric function. A function f of n variables
is symmetric, if the output value of f is the same for all possible

n! permutations of its input. The element-wise max operator on
vectors is used as a symmetric function by PointNet to render the
network invariant to the input order of the point set.
Figure 3 depicts this core structure of PointNet. The basic concept of
PointNet aims to approximate any function f ({x1, ...,xn }) on a set
of points by applying a max pooling operation on the transformed
elements of the input set:

f ({x1, ...,xn }) ≈ γ (MAX (h(x1), ...,h(xn ))) (1)

The function h acts as a feature extractor of the input points, while γ
behaves as a classifier. PointNet approximates these functions with
the help of multi-layered perceptrons (MLP) that are trained during
the learning phase of the network. With a collection of different
functions h, different functions f can be realised and thus different
properties of the input set can be captured.

3.2 Feature Extraction
PointNet uses feature extraction to learn the local spatial encoding
of every point. This is done with the help of multi-layered per-
ceptrons that apply one dimensional convolution kernels on the



Fig. 3. Basic structure of PointNet. The function h projects each input point
to a higher dimension embedding space and extracts their per point features.
Then д uses a maximum operator to aggregate the extracted features to a
global descriptor that is finally used by γ to generate the final prediction
label. Adapted from [2].

(x ,y, z) components of the input points until enough point features
are extracted and the dimension of the feature vectors grows to a
sufficient size. The feature extraction kernels are learned during
the training phase of the network. Each kernel captures a specific
region of the point cloud. This means that in the exemplary case of
an airplane, specific kernels would be activated by the points in the
head, body or wings of the plane and corresponding features that
would lead to the classification of the point cloud as an airplane
would be extracted [14].

3.3 Transformation Networks
PointNet aligns the consumed input sets and their feature spaces
to a canonical space in order to relax the constraints of the feature
extraction and classification process, as well as to make the seman-
tic labeling invariant to rigid transformations applied to the input
point cloud. This is done by introducing another mini network to
the larger PointNet structure, the T-Net. These MLPs are trained
with the rest of the network and are tasked with predicting affine
transformation matrices for each input point. As shown in Figure
2.1, these matrices are then used in the steps of input transforma-
tion and feature transform to align different input sets and perform
pose normalization, or to align the feature spaces of different input
clouds.

3.4 Local and Global Information Aggregation
The global feature descriptor built by the max pooling operator
summarizes the input point cloud by a sparse set of key points and
can be further used for object classification tasks when fed to a
classification network. However, this purely global descriptor does
not suffice for the tasks of part- or scene semantic segmentation.
For example when performing a segmentation task on a point cloud
that encapsulates a plane, it is not enough to identify the geometric
labeling of the input, but the network is also tasked with producing
labels for each point that identify the part of the object (like wings, or
passenger seats) to where the point belongs. As such, a combination
of global and local knowledge is needed. As depicted in Figure 2.1,
PointNet uses a separate segmentation network to handle this task.
Here, each local per point feature is concatenated with the global
feature vector. These combined feature vectors can then be used
to generate new features and point quantities that link local and

global semantics and can then be used by the network to perform
segmentation tasks.

4 PROPERTIES OF POINTNET
The authors of PointNet show that the presented neural network is
able to function as an universal approximator for any continuous
set function [7]. They further note that as a whole, the semantic
expressiveness of PointNet is strongly coupled to the number of
neurons in themax pooling layer and the size of the global descriptor
vector K . Because PointNet uses max pooling to aggregate the local
per point features to a global feature vector, only at most K points
can influence this global feature descriptor and the network learns
to summarize the input point cloud by a sparse set of key points:
the critical set. The critical set often corresponds to the skeleton of
the object contained in the point cloud and defines an upper bound
shape of the point cloud. Loosing non critical points or perturbating
points between the critical set and the upper bound shape results
in the exact same global feature vector and does thus not change
the semantic labeling of the input. Thus the max pooling operation
and the resulting critical set act as a measure against perturbated
or corrupted input sets and provides an inherent robustness to the
PointNet network structure.

5 CONCLUSION AND EXTENSIONS OF POINTNET
The PointNet network is a widespread approach for handling deep
learning directly on the point cloud data format. The network uses a
single symmetric function to structure the input in order to produce
labels for object classification and semantic segmentation tasks.
Today, PointNet provides the basis for many modern and state of
the art applications on point clouds.
However, PointNet is not without it’s faults and drawbacks and can
still be improved. One limitation of the original PointNet structure
is that the neural network does not consider distances to interesting
neighbouring points as relevant information when extracting point
features. Furthermore, for real life applications, like autonomous
driving, high accuracy decisions have to be made in seconds on large
data sets consisting of millions of points. This is hard to achieve
for the original PointNet, since particularly efficient image analysis
methods, like 2D convolutions, are not used. The original PointNet
does also not consider the sparsity of real life point clouds that
are captured by modern sensors. If PointNet is used on a region
of the cloud where the density of points is low, the efficiency of
the network also declines. PointNet++ [9] and PointPillars [4] try
to solve these problems by improving on local feature extraction
with the help of a grouping layer, or pillar encoder respectively,
that leverage PointNet on point neighbourhoods of different sizes.
In the case of PointPillars these pillar feature maps can then be
converted to pseudo 2D images that can then be used by efficient 2D
convolution feature extraction techniques. Furthermore PointNet
can also be used as a tool for pose estimation to track and align
point clouds [5], [11], or to learn hand poses directly from depth
images and point clouds [3].
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