
Assignment 8 Report - Group 4

Abalone Implementation

In this task we implemented the search strategy and optimization for determining player
moves in the two player board game Abalone. The implementation is based on the
Alpha-Beta pruning search algorithm with additional optimization using parallelization,
move caching, and iterative deepening.

8.1 Sequential Alpha/Beta

The sequential form of the algorihtm is implemented without further optimizations such
as move caching or iterative deepening and is used to create a base case for further
optimizations and timings. Alpha-Beta pruning is an algorithm used in adaptive game
tree search algorithms that aims at identifying and pruning trivial subsections of the
tree, thereby greatly decreasing the calculation time of the tree search. The algorithm
maintains the values alpha and beta that represent the minimum and maximum score
the maximum and minimum player are at least assured. A move is declared trivial if it
falls outside the alpha-beta window and is thus strictly worse than a previous examined
move. Such nodes do not have to be examined further as they cannot influence the final
decision in any way.

8.2 Optimizations

Caching: PV First

The core idea of PV (principal variation) caching is to reuse the already calculated game
tree from the last iteration. The principal variation describes the sequence of moves that
was considered best by the search of the last iteration and is therefore expected to be
played by a rational agent.
The performance of Alpha-Beta search is directly correlative to the ability to effectively
prune large regions of the game tree, which can be achieved by quickly narrowing the
available Alpha-Beta window. Firstly evaluating nodes that represent good moves in the
game is an easy way to succeed at this task, since the minimum gains for both players
are set rather high at the beginning of the search. In the same manner we employ the
principal variation of the last iteration to firstly handle nodes in our search that have a
high possibility of being one of the better moves in the current game tree.

Predicting the enemy move

In a similar manner to PV caching we tried to use the already calculated principal
variation to correctly predict the other player’s move. Once correctly predicted we could

1



follow the cached move sequence and only continue searching the tree again when reaching
the end of the cached principal variation. This idea was scrapped, however, when it
became clear that a globally seen deeper game tree would not guarantee the cached
principal variation to be the currently best possible move, and that in fact all other
possible moves would have to be inspected with Alpha-Beta search in order to find the
best move for the current iteration.

Young Brothers Wait Concept

The Young Brother Wait Concept (YBWC) is often used to optimize the traversal of game
trees in Alpha-Beta search. ”Brothers” are defined as sibling nodes that are connected to
a common parent node. The concept delays the use of parallelism and multithreading
in the search algorithm until the subtree of the oldest brother is available and did not
result in a pruning of the sibling nodes. By waiting until subtrees are available that are
relevant for the final result with a high probability, the algorithm prevents unnecessary
resources to be spent on irrelevant subtrees and reduces the overall search overhead.
We use the concept to firstly sequentially traverse along the cached pv nodes of the last
iteration until reaching the maximal defined search depth. Parallelism is then enabled for
the sibling nodes of the principal variation moves in a recursive manner from the top of
the tree to the bottom while maintaining and communicating alpha-beta information to
the lower levels.

Iterative Deepening

Iterative Deepening uses the technique to cache already calculated move sequences to
reorder the move iteration in Alpha-Beta search in such a way that iteratively incrementing
the search depth results in a faster runtime than searching for the given maximal depth
immediately. The algorithm start with a maximal depth of 1 and gradually increases
the current maximal depth in each iteration, while preserving the principal variation
of the last iteration in order to search these first in the current iteration. Besides the
benefital move ordering and enhanced search time, the algorithm can thus be used to
great effect to manage available computation time per turn, since even the results of the
partial search can be accepted as a valid move.
However, in our implementation this technique did not result in an increase of computation
efficiency. We propose that the reason for this behaviour could be found in the previously
implemented concept of pv caching, which already reorders the nodes of the search tree
in a beneficial tree.

8.3 Parallelization

We use the OpenMP task construct to handle parallelism and load balance in the search
tree. In order to guarantee thread-safety with the given code, we create a private copy
the board and evaluator for each task, thus enabling each spawned thread to use private
local instances of the classes.

2



Initially, we started the parallelization based on the depth of the current search.
However, this lead to load imbalance since some nodes may have a shallow search depths
compared to its siblings. This Resulted in nodes waiting for children with deeper search
depth to finish executing, while having threads of the already finished nodes idling unused.
It is also hard to control the resource and memory usage this way because the amount
of playable moves that can be taken at each node varies greatly between different tree
nodes and espcecially between different depths.
We have experimented on our local machine for parallelization of depth greater than 2
eventually results in segmentation faults due to exhaustion of memory.

Given the need to control the resources and load balance of the parallel threads, it is
intuitive to limit the number of simultaneous working parallel tasks by the number of
cores we can utilize. In this implementation we first tried to dynamically limit the number
of parallel tasks to at most 48 using a shared read-write lock. Any node that was not
allowed to execute in parallel would start a serial search until one of the already running
tasks would return and make room for a new parallel task. This dynamic allocation of
parallel resources did not result in a speedup, however. We presusme this is due to the
random nature of the allocation of the resouces, where the high overhead to start and
manage the parallelism on not neccessarily beneficial segments of the tree outweights the
gain from utilizing the multiple cores.
Instead, we switched to the idea of PV Splitting to control the load balance and parallelism
on the search tree by spawning parallel tasks only on already established promising nodes.

PV Splitting

In order to optimize the usage of the available 48 cores and to reduce the overhead of
spawning parallel tasks on nodes that are not neccessarily beneficial to the end result
of the game tree search, we limit the use of parallelism on the direct children of the
PV nodes that are explored first during the Alpha-Beta search. In the same idea as the
YBWC we delay the launching of the parallel task until the subtree of the oldest brother
has finished evaluating. This concept allows us to gain Alpha-Beta information faster
along the considered optimal path and thus efficiently cutting nodes before searching
on other potential moves. In order to further reduce the overhead of task generation we
limit the generation of parallel tasks to nodes of lower depths in the search tree, that
still have to do extensive searching.

Alpha/Beta Synchronization

During the parallel search, we allocate different local Alpha-Beta values for each node
and running thread. This results in each of the thread only looking and updating their
own alpha-beta values without considering their sibling’s alpha-beta window. However,
the original sequential version of alpha-beta pruning is intended to prune the younger
siblings, given that the older sibling is finished with their parts of the tree. We optimized
this by creating a new shared upper alpha variable and a shared lock array at specific
synchronization points (principal variation nodes) that can be accessed by all children

3



during the PV Splitting. Each spawned node compares its current alpha or beta with the
already found upper alpha at the synchronization point (nearest upper PV Node) and
updates it’s window accordingly. If a direct child of the synchronization node returns
it’s calculation the shared upper alpha value is updated and all corresponding children
directly see the updated upper alpha value. Every running node can then terminate its
search if it finds out that their part is no longer the most optimal hence further search is
not needed.
We limited communication of the Alpha-Beta window to the synchronization points in
order to reduce communication overhead on a shared variable.

Parallelize Push Moves

We also tried to parallelize the moves which would take out the opponent’s piece (out
move in template code) in order to see quickly if the resulting move yields a good final
outcome. This way, it is expected that it would also prune the trees much faster since
alpha-beta value gained by looking at this potential move is updated earlier. However,
during testing we don’t see any significant speed up by using this method.

Results

Measured results of the described optimizations, where Table 1 depicts the absolute
achieved runtimes when executing the minimax search on the supermuc on one node
with 48 threads on a maximal search depth of 6 and Table2 represents the achieved
speedup. The sequential runtime is used as a base case for comparison when calculating
the speedup. All depicted measurements were averaged from two consecutive moves
played by two different players using the minimax search.
As mentioned above, we can see that the dynamic allocation of parrallel ressources
introduces a massive overhead to the search algorithm, while PV manages the spawned
tasks in a beneficial way. Compared to Loop Iteration simple PV Caching is superior,
especially when playing mutliple consecutive moves. The reason for this behaviour might
lay in the inability of Loop Iteration to use the previous cached principal variation to it’s
fullest potential.
Thus, we receive the best runtime on the supermuc when combining Alpha-Beta search
with PV Caching, as well as PV Splitting.

4



Table 1: Comparisons of the achieved runtime in seconds when using the different opti-
mization techniques on the starting and midgame board with a searchdepth of
6.

Optimization Start Position (s) Midgame Position (s)

Sequential 10.2 22.8

No Caching, dynamic Allocation 115.0 > 120.0

No Caching, PV Splitting 3.0 7.0

PV Caching, PV Splitting 2.0 5.8

Loop Iteration, PV Splitting 2.8 6.7

PV Caching, PV Splitting, Push 2.0 5.8

Table 2: Comparisons of the achieved speedup when using the different optimization
techniques on the starting and midgame board with a searchdepth of 6.

Optimization Speedup Start Speedup Midgame

Sequential 0 0

No Caching, dynamic Allocation -11.2 < -5.2

No Caching, PV Splitting 3.4 3.2

PV Caching, PV Splitting 5.1 3.8

Loop Iteration, PV Splitting 3.6 3.4

PV Caching, PV Splitting, Push 5.1 3.8

5


