
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Volume Data Compression

Maarten Bussler



DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Volume Data Compression

Komprimierung von Volumendaten

Author: Maarten Bussler
Supervisor: Prof. Dr. Rüdiger Westermann
Advisor: M.Sc Christian Reinbold
Submission Date: 15.08.2020



I confirm that this bachelor’s thesis in informatics: games engineering is my own work and I
have documented all sources and material used.

Munich, 15.08.2020 Maarten Bussler



Acknowledgments

I want to acknowledge

• ...Christian Reinbold, my advisor, for his availability, patience and time he put into his
helpful feedback,

• ...Dr. Rafael Ballester-Ripoll for his insight into the matter of TTHRESH and the structure
of volume data,

• ...my friends and family for always keeping my mood up.



Abstract

Despite extensive research in the field of volume data compression, modern volume visual-
ization faces the challenge to handle both memory and network bottlenecks when visualizing
high resolution volume data at a smooth visual feedback rate. Techniques to efficiently
compress and decompress volume data are much in demand. TTHRESH by Ballester-Ripoll
et al. [BLP19] tackles this problem by providing a lossy compression technique based on
the HOSVD and adaptive thresholding of volume elements that offers high compression
ratios at the cost of a comparably low approximation error. We hypothesize the possibility
of improvement of the achieved compression ratio when incorporating known structures
of the data, like the hot corner phenomenon, into the algorithm. Furthermore, we analyze
the benefit of combining core truncation as another established compression technique with
TTHRESH.
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Kurzfassung

Trotz intensiver Forschung im Bereich der Datenkompression steht die moderne Volumengra-
fik der Herausforderung von limitierter Größe in physikalischen Speicher und Bandbreite
gegenüber, die für ein flüssiges visuelles Feedback benötigt werden. Algorithmen für eine
effiziente Datenkompression in Hinsicht auf Kompressionsrate, Kompressionsfehler und
Kompressiongeschwindigkeit sind gefragt. TTHRESH [BLP19] ist ein Kompressionsalgo-
rithmus speziell für Volumendaten. Die Technik basiert auf der Zerlegung des Volumens
durch HOSVD, sowie Reduzierung der unwichtigen Volumenanteile und erreicht so kom-
petetive Kompressionsraten zu kleinen Einbußen in der Kompressionsqualität. Diese Arbeit
verfolgt das Ziel, den vorhandenen TTHRESH-Kompressionsalgorithmus hinsichtlich der auf-
gebrachten Kompressionsrate weiter zu verbessern. Dabei werden Vorteile von vorhandenen
Strukturen der Daten, wie dem ’aktive-Ecke’ Phänomen, oder die Kombination mit anderen
Kompressionstechnicken analysiert.
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1. Introduction

Volume rendering is a field of computer graphics and data visualization. It constitutes a
set of methods and algorithms to render a 2D representation of a discrete 3D scalar data
set (volume data set). 3D data that is difficult to represent with geometric surfaces (like MRI
Scans, fluid dynamics, or gas) is hard to render with conventional methods. Volumetric
visualization parses and analyzes such complex data, while allowing experts to reveal complex
3D relationships within the data set. Up-to-date scanner hardware and simulation software
advances at a rapid speed and volume data is increasing in size and complexity. Subsequently,
scientific and visual computing tasks on volume data are faced with the problem on how to
handle such complex data while still providing the fluent interactivity and visual feedback
needed for conducting analytic tasks on the data. As resources on physical memory and
bandwidth are limited, modern research on volume data and data visualization is confronted
with the challenge of efficient data reduction and compression.
Often times volume data is used as the basis for a simulation or is subject to successive
calculations. It is thus required to bound the compression error during data reduction on
a minimal approximation error. Hence, although lossy and broad compression of volume
data offers great reduction in filesize, it is not always an adequate solution. The TTHRESH
volume data compression algorithm by Ballester-Ripoll et al. [BLP19] provides a smooth and
flexible compression of volume data according to a given target error, while still achieving
compression ratios comparable to algorithms with broader approximations of the volume.
Tucker decomposition (see Section 2.2) is a popular tensor tool for dimensionality reduction
that approximates a given input volume data set T by a set of orthogonal factor matrices
Ui and a core tensor B and functions as a basis of TTHRESH. The algorithm then applies
adaptive bit-plane coding followed up by run length encryption and arithmetic coding on the
volume data and compresses the data by thresholding core coefficients and accuracy of less
importance. The goal of this thesis is to improve the TTHRESH compression algorithm in
regards of its achieved compression ratio, while preventing a drop in compression quality.
This thesis is structured in the following way: In chapter 2, the theoretical background of the
structure of volumetric data as well as the Tucker decomposition as a mean to decompose
volume data is introduced. Furthermore, various compression methods, which are then
implemented in the volume compression algorithms, are explored. The volume compression
methods of core truncation and TTHRESH are analyzed and discussed in more detail in
chapters 3 and 4. With this theoretical background we finally try to improve the TTHRESH
algorithm in chapter 5. Following are a summary and discussion of the results in chapter 6
and a conclusion of the whole thesis in chapter 7. We provide access to our code on [Bus20].
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2. Theoretical Background

2.1. Volumetric Data

To understand the procedure of volume compression it is first important to realize the general
structure of volumetric data sets. Many visual effects (like clouds, gas of fluids) are volumetric
in nature and are difficult to model with geometric primitives. As a solution, a specific form
of representation, the volume data sets, were introduced. They are 3D entities, that do not
consist of tangible surfaces and edges. Typically, volume data is represented by a discrete set
T of voxels (x, y, z, v) (Fig. 2.1). v represents the value of some attribute (e.g. color, density,
heat or pressure) of the data at the 3D position (x, y, z). Voxel-values may be taken from
random locations in space, with regularly spaced intervals between the samples on each
dimension. As the voxels are defined on a regular grid and are only specified on the discrete
grid locations, data structures like 3D arrays (further referred to as tensors) are often used to
store these data sets.
Volume data is obtained by numerous sampling, simulation and modelling techniques. In the
medical field, MRI and CT-Scans acquire data as 2D slices, which are later reconstructed in a
volumetric fashion for the purpose of better visualization. Many computational fields, like
fluid dynamics, also depend on volume data, as the results of simulations are often visualized
3D volumes for later analysis and interpretation [HJ11].

Figure 2.1.: Structure of 3D volume data (right) and discrete 2D voxel-grid (left). One can
notice that the values of the voxels are not continuously defined over the whole
volume, but only at specific grid locations [Eng+04].
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2. Theoretical Background

2.2. Tucker Decomposition

Many transform-based compression algorithms for volumetric data rely on some form of
data-dependent bases that decompose the data set into smaller approximations. HOSVD
(Higher-Order SVD) is one such approximation and is a generalization of matrix SVD for
tensors.
According to the SVD (Singular Value Decomposition), every 2D matrix A can be represented
by its eigenvalues and eigenvectors [De 09]:

A = UΣVT. (2.1)

U and VT are orthogonal matrices that represent the left and right singular vectors, Σ is a
diagonal matrix that holds the singular values σi of A. U, VT and Σ can be computed easily by
multiplying A with it’s transposed form and solving for either U or VT:

AAT = UΣVT ∗VΣTUT = U(ΣΣT)UT. (2.2)

U now holds the eigenvectors of AAT, while Σ carries the squared eigenvalues σi as the
singular values of A. Respectively, V holds the eigenvectors of AT A:

AT A = VΣTUT ∗UΣVT = V(ΣTΣ)VT. (2.3)

Just like with the SVD for 2D matrices, every tensor T ∈ RI1 ...In can be decomposed and
represented by a basis core-Tensor B ∈ RI1 ...In , holding the eigenvalues, and a set of matrices
Ui (factor matrices) of size Ii × Ii that represent the eigenvectors of the tensor along each
dimension (Fig.2.2) [DDV00]. This is called a Tucker decomposition of the tensor. A significant
compression ratio can be obtained by approximating the tensor and decreasing the size of the
basis and the factor matrices with the help of truncation (see Section 2.3.4).
In order to understand the decomposition of a tensor into its core and factor matrices, it is
first important to look into the process of multiplying a 3D tensor with a 2D matrix (TTM).
We can describe a 3D tensor as a set of 2D matrices (slice of a tensor). A single slice of the
tensor is then defined by traversing over the elements of the tensor, by iterating along two
dimensions (modes) and fixing all others. The 2D matrix rows and columns higher order
analogues of a 3D tensor are called fibres. Similar to tensor slices, they can be obtained by
iterating along a single dimension (mode) of the tensor and keeping all others fixed (Fig.
2.3) [KB09]. The k-mode product of a tensor T with a matrix A multiplies each mode-k fibre
of T with A and is denoted as T ×k A [Zha+14]. Consequently, with the help of the TTM
notation, the Tucker decomposition of T can be written as

T = B×1 U1 ×2 U2 ×3 U3. (2.4)

By inverting the equation 2.4, the factor matrices Ui characterize a two-way transformation
between core B and T

B = T ×1 U1−1 ×2 U2−1 ×3 U3−1
. (2.5)

It is possible to represent a 3D tensor T as a 2D matrix by ordering all i-mode fibres of T
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2. Theoretical Background

as columns of the matrix (Fig. A.1). This is called the i-th mode unfolding Ti of T [KB09].
HOSVD is an efficient and straightforward approach to calculate a Tucker decomposition
with orthogonal factor matrices. This is achieved by setting each Ui as the left singular vectors
gained from the SVD of the i-th mode unfolding Ti. Finally, B can easily be computed with
the help of equation 2.5. It is important to note that a HOSVD decomposition always exists
for any form of tensor [BLP19].

Figure 2.2.: Schema for HOSVD, with the full original tensor on the left and decomposition
into core and factor matrices on the right. Adapted from [BLP19].

2.2.1. Properties of Tucker Decomposition

Core and factor matrices constructed by HOSVD provide a number of useful and exploitable
properties for use of efficient compression.

• It is important to note that the HOSVD is unaffected by many transformation tech-
niques [BLP19]. Spatially moving the data, padding with zeroes, scaling by some
constant, or filtering by upsampling with linear interpolation will result in the same
core B, therefore algorithms based in the HOSVD are convenient for data analysis and
visualization purposes.

• The generated core B can be structured in such a way that the norms σi of the slices of
the core are decreasing in magnitude in logarithmic fashion along each axis. [BLP19]
The norms in this case act as a generalization of the scalar values in the slice. Thus, the
largest core coefficients that contain most of the original tensor’s energy are centered
around the first element B(1, 1, 1) of the tensor. This upper left corner will further be
regarded as the hot corner (Fig. 2.4). For an efficient compression of the volume data,
special consideration should be given to coefficients situated around the hot corner and
the otherwise sparse structure of the core.
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2. Theoretical Background

Figure 2.3.: Representation and structure of a
tensor according to its a) mode-1
fibres b) mode-2 fibres c) mode-3
fibres. Adapted from [KB09]

Figure 2.4.: Visualization of the HOSVD core B
element magnitudes. All elements
were scaled with x −→ ln(1 + x)
and enhanced with the colormap
on the right. As suggested by
the hot corner phenomenon, the
core elements of largest magni-
tude concentrate around B(1, 1, 1).
Adapted from [BLP19]

2.3. Data Reduction

Especially in the domain of volume data, interactivity and fluent visual feedback between data
set and data consumer is crucial when visualizing data and performing analytic tasks. With
recent technological advancements scanners and computers become increasingly powerful,
generating very explicit and in-depth volume data. As a result, storage sizes on disk, as
well as loading and processing times are multiplying. Data reduction tries to address these
I/O-related difficulties. By reducing in-memory sizes of data sets, lower transfer times to and
from the disk are achieved.
In general, data reduction techniques can be assigned to one of two groups [Li+18].

• Lossless compression is achieved by utilizing patterns in the data. No information is
intentionally discarded and apart from floating-point rounding errors the reconstructed
data after compression evaluates to the same data as the original data.

• Lossy compression achieves data reduction by cutting off insignificant values in the
data set. Thus, the reconstructed data won’t match the original data perfectly, but
much higher compression rates than lossless methods can be realized. While these
techniques usually try to minimize the introduced error, the amount of information loss
differs greatly between applications, and often the exact reduction parameters have to
be modulated on a case by case basis.

5



2. Theoretical Background

The following paragraph gives a general overview of the compression techniques that are
discussed in this paper. Each technique has different tradeoffs in respect to compression-rate,
processing time and introduced error.

2.3.1. Run-length Encryption

Run-length encryption (RLE) is a lossless and simple encryption algorithm that loops through
the input data and results in a sequence of consecutive data values in a row (run) as output.
Compression is achieved by reducing the physical size of these runs in the original data.
Runs are encoded in two parts. The first part represents the number of characters stored
in the run, the second part is the value of the character in the run. For example, the data
(0000111) would be encoded as the sequence [4 0, 3 1]. Context and type of data greatly affect
the obtained compression ratios. The more consecutive values in a row, the longer the run
and the more space is saved in the resulting compression.
Modified run-length encoding [SW09] is an important variant of the traditional RLE and will be
used by later compression algorithms in this paper. Unlike the traditional RLE, the modified
version of RLE only works on binary strings and stores distances between bits of value "1".
The distance of two bits of value "1" is defined as the frequency of value "0" bits between these
two bits. The beginning of the bit sequence is interpreted as a bit of value "1". For instance
the above data (0000111) would be encoded as [4,0,0] in modified run-length encryption, since
the first value "1" bits is distant of four value "0" bits to the first implicit "1" bit at the start of
the sequence. Directly thereafter follow two "1" bits without any value "0" bits between them.
Modified run-length encoding benefits from sparse data sets, since with a decreasing number
of "1" value bits, the total number of encoding symbols in the output decreases, too.

2.3.2. Arithmetic Coding

Arithmetic coding (AC) is an entropy encoding technique. The information content, or entropy
H of a source S is defined as

H = −
n

∑
i=1

pi log2(pi). (2.6)

S is composed of independent and identically distributed symbols ai with each symbol having
a probability of occurrence pi [HV94]. H gives a lower bound on the expected number of bits
needed to represent each ai and thus indicates the optimal bit representation of the input
sequence. Entropy coders remove redundancy from the signal by encoding the symbols ai as
a sequence of codewords ci that minimizes the average number of bits needed per codeword.
As a result, the number of bits needed to represent each symbol in the encoded sequence
converges to the entropy H.
Arithmetic coding tries to achieve this optimal bit representation by encoding frequently
occurring symbols with fewer bits than lesser occurring symbols. The algorithm takes a
series of symbols as input and incrementally builds a floating point number in the range
[0, 1] as output. AC relies on a stochastic model to distinguish the symbols it is processing.
The task of the model is to give an accurate probability distribution of the symbols in the
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2. Theoretical Background

input message. This is realized by assigning each specific symbol to a unique segment in
the interval [0,1), thereby effectively trying to predict the probability that a specific symbol
will appear. The optimality of the resulting encoding process is tied together closely with
the accuracy of the model and many different ways of modeling the symbol frequencies
exist. Some models are non-adaptive and assign fixed probabilities to all symbols. Others
are adaptive and gather statistics about the input file or dynamically evaluate the probability
for an event by inspecting the events that preceded it. The decision which model to choose
is application based, but for the algorithm to work, both the encoder as well as the decoder
have to have identical models [Li+18].
In the encoding process the first symbol of the input defines a range of the start-interval [0,1)
that was assigned to it according to the model. Following symbols repeat this step by further
dividing the interval of the previous step proportional to their own segment defined by the
model (Fig. 2.5). After processing the whole input sequence the encoder outputs a floating
point number that is contained in the final interval.
The decoder reverses the subdivision of intervals. In each step the model detects the symbol,
whose assigned interval covers the current value of the message. For further decoding of the
following symbols the same narrowing of the interval as in the encoder is performed. As
with the encoder, this shrinking of the intervals continues until the end of the file is reached.

Figure 2.5.: Example encoding of the sequence "abc" with AC. Before encoding, the start-
interval is initiated with [0,1) and is set as the current interval. The interval is then
divided according to the probability distribution of the encoding symbols. The
final interval to encode the input sequence is calculated by successive subdividing
of the current interval proportional to the interval segment size of the current
encoding symbol [SV10].

Huffman coding is another popular entropy coding technique. Similar to AC, Huffman coding
aims to encode frequent symbols with short bit-strings, thereby reducing the physical size of
the input data. The main difference between Huffman coding and AC lies in their models,
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2. Theoretical Background

called the Huffman tree. The Huffman tree is built on the basis of a tree like structure and
is used for compression and decompression. In order to generate the tree, frequencies of
the input symbols are gathered and a tree leaf-node for each distinct symbol is created. The
algorithm then incrementally merges two nodes of the lowest frequencies into a higher level
node, whose frequency value is the combined frequency value off the children nodes. The
merging process continues until only the root node is left. This way, every node apart from
the leaf-nodes provides edges to exactly two children (Fig. 2.6).
The encoder labels left and right edges of the tree with the binary values "1" and "0". Each
input symbol is then encoded by traversing the Huffman tree from the root node to the
corresponding leaf-node and generating an equivalent binary string according to the edge-
values. The structure of the Huffman tree guarantees that frequent symbols offer paths of
short distances to the root node, thus resulting in shorter codewords [SW09].
Decompressing a Huffman-encoded file first requires rebuilding the Huffman tree from stored
frequencies (usually found in the header of the file). A stream of bits is then read from
the encoded file and the Huffman tree is traversed accordingly from the root node, until
a leaf-node is reached. Finally the symbol of the leaf-node is read and swapped with the
bitstream for the decoded file. The procedure repeats, until the end of file is reached.
Although both algorithms seem very similar, both techniques provide different strengths and
weaknesses. In general, Arithmetic coding offers more efficient encoding, while Huffman
coding boasts superior reconstruction speed [BP16].

Figure 2.6.: Huffman encoding of the input sequence "this_is_test". In a) the frequencies of
the symbols are counted and corresponding nodes generated. In b) the Huffman
tree is built and Huffman codes are assigned to the input symbols. Adapted from
[SW09].
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2. Theoretical Background

2.3.3. Quantization

Quantization is a lossy compression technique that limits the complexity of its input data
by reducing the precision of the data values [Li+18]. This is typically attained by mapping
floating-point values to a finite set of fixed output values (bins) that serve as approximations
for the input data (Fig. 2.7). For example, rounding of floating-point values to integer values
could be seen as a simple form of a quantization process. The device or function that performs
the specific mapping of the data is called the quantizer, while the difference between the
original value and the mapped quantized value (e.g. the rounding error) is referred to as the
quantization error. Considering the many-to-few mapping of the input data, quantization is
a nonlinear and irreversible process. As a consequence it’s impossible to recover the exact
original value of the input data, since the same output value is assigned to numerous input
values.
The input data sets often differ greatly in regard of their value distributions. To this end,
and in order to improve the approximation ability of the bins, the mapping scheme can be
adjusted to best encompass the underlying data and reflect the uniform or non-uniform value
distributions. Quantization is rarely used as-is but forms the basis for numerous complex
compression techniques and is usually combined with other compression algorithms to
further encode transformed data at the cost of a newly introduced error.

Figure 2.7.: Visual example for the process of quantization. A sine wave (blue) is approximated
and encoded with quantization (orange). As each output value (bin) is encoded
with 3 bits, there are 8 bins in total. The green plot refers to the quantization error.
Adapted from [Bha18].
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2. Theoretical Background

2.3.4. Truncation

Truncation is a popular and widely used algorithm for lossy data compression. As in quanti-
zation, substantial compression ratios are achieved by reducing the precision of the input data.
In general, in the field of signal processing, truncation is employed to divide floating-point
values into multiple precision levels. As an example MLOC (Multi-level Layout Optimiza-
tion Framework for Compressed Scientific Data) [Gon+12], a truncation algorithm built for
arbitrary and hard-to-predict data layouts, divides double-precision 64-bit values into seven
level. The first level holds the first two byte of the data and is constructed out of one bit for
the sign, eleven bit for the exponent and three bit for mantissa (Fig. 2.8). Each consecutive
level represents an additional byte of the original data. Not required levels are discarded, but
each saved byte after the first level increases the precision of the mantissa, thus decreasing
the introduced error.

Figure 2.8.: Truncation according to MLOC: double-precision values are partitioned into seven
levels, with the first level holding two byte and each consecutive level carrying an
additional byte [Gon+12].

In the context of volume data compression the idea of truncation is transformed and applied
on 3D data as a whole, not just on scalar values. As characterized in Section 2.1, volume data
is structured as a 3D array that consists of multiple 2D matrices (slices). Volume data is often
very sparse and eliminating insignificant values of the data set is a common approach used
in various compression techniques. The simplest way that comes to mind to realize this goal
is to truncate the 3D volume data by discarding whole slices of the data set with the least
significant values. Consequently, the missing values are approximated with "0" values in the
reconstruction step.
By preprocessing the volume data and decompositing it with the help of HOSVD (see Section
2.2), an efficient categorization of important and insignificant data sections for reduction
can be generated. However, recent studies [BP16; BLP19] have proven that thresholding and
eliminating the coefficients of the tucker core on a coefficient by coefficient basis yields better
results in regard of relative error and compression ratio than the slice-wise truncation of
the core. Nevertheless, truncation is an important basis-algorithm that can further be ex-
panded, and together with R.Ballester’s latest adaptive thresholding volume data compression
algorithm [BLP19] motivated further research in the field of volume data compression.
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3. Implementation of Tensor Truncation

As mentioned in earlier chapters, volume compression by truncation is a widespread and
extensively studied technique that shall serve as a reference algorithm for comparison of
other compression algorithms in this thesis. The hereinafter described algorithm is adapted
from [BP16].

3.1. Tensor Rank Truncation

The decomposition of a tensor T with the help of HOSVD yields in a core tensor B as well
as factor matrices U{1,2,3}. Similarly to the truncation techniques discussed in Section 2.3.4,
the goal of tensor rank truncation is to compress volume data by approximating the tensor
by removing dispensable core slices and corresponding columns in the factor matrices. Just
as mentioned in Section 2.3.3, the largest core coefficient values tend to concentrate around
the hot corner B(1, 1, 1) of the core. Because of this property, the ideal subset of slices to
discard must be chosen from the opposite side of the hot corner [BP16]. As a result only
1 ≤ Rn ≤ In core slices along each dimension and corresponding factor columns have to be
encoded. This tensor rank truncation is illustrated in Figure 3.1 and is inexpensive to construct
and reconstruct. Pseudocode to perform core truncation is depicted in Figure 3.2.
Finding good enough choices for R1, R2, R3 that raise the compression ratio while reducing
the introduced relative compression error is no trivial task. A practicable solution is to
iterate over all truncation possibilities, and picking the best one for a given target error
or target compression ratio. Because of the orthogonality of the factor matrices, and T =

B×1 U1 ×2 U2 ×3 U3 it follows that ‖T‖ = ‖B‖ [BP16], where ‖·‖ refers to the Frobernius
norm: ‖T‖ =

√
∑i,j,k T2

i,j,k. Moreover, any error introduced in B passes down to T. This
allows for a fast and easy way to compute any introduced relative error, without having to
reconstruct the original tensor first:

ε =

√
‖T‖2 − ‖B‖2/‖T‖. (3.1)

Since the relative error εi for every possible subcore Bi depends on the norm of the subcore,
any efficient algorithm to compute all different truncation choices needs to quickly obtain
the norm of the different subcores Bi. This is done by utilizing a summed-area table (SAT)
that stores at any point (x,y,z) the sum of all values located in the cuboid spanned by the hot
corner (1,1,1) and (x,y,z). For a 3D space, this can be done in O(I1 I2 I3) time by computing

SAT(x, y, z) = B(x, y, z) + SAT(x− 1, y− 1, z− 1) + SAT(x, y, z− 1) + SAT(x, y− 1, z)+

SAT(x− 1, y, z)− SAT(x− 1, y− 1, z)− SAT(x, y− 1, z− 1)− SAT(x− 1, y, z− 1)
(3.2)

11



3. Implementation of Tensor Truncation

for every coefficient (x, y, z) ∈ B.
The algorithm then evaluates the relative error ε and compression factor F for all I1 I2 I3

possible truncation choices. This is accomplished by counting the remaining coefficients in
the truncated core and factor matrices versus the number of coefficients prior to truncation:
F = (R1R2R3 + I1R1 + I2R2 + I3R3)/(I1 I2 I3). Subsequently, the resulting list is ordered
ascending to F and every best ε achieved so far is registered, while all entries that do not
improve the current relative error are discarded. This way, only the best ε for every F are
stored. All solutions for which a better counterpart in terms of both F and ε exists, are
discarded. In particular, this means that the final list contains no two pairs (εi, Fi) and (εj, Fj)

where εj < εi and Fj < Fi. According to the target error or target compression ratio a solution
of the sorted list is then selected and the core is truncated correspondingly (Fig. 3.3).

Figure 3.1.: Schema for tensor rank truncation. The original tensor approximated by reducing
the size of the core tensor and factor matrices of the HOSVD. Adapted from
[BLP19].

3.2. Encoding of Surviving Coefficients by Quantization

The problem of how to efficiently encode any remaining coefficients of the core and factor
matrices remains one of the most dominant problems of tensor rank truncation. As mentioned
in Section 2.3.3, quantization is a popular method to further compress already transformed
data. As discussed in Section 2.2.1, any core produced by the HOSVD can be reordered in
such a way that its core slice norms are decreasing in a logarithmic manner. In order to
limit the newly introduced quantization error, the mapping scheme is adapted to match the
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3. Implementation of Tensor Truncation

//input: core tensor B, factor matrices U{1,2,3} and truncation choices R1,2,3

function Truncate(B, U{1,2,3}, R1,2,3)
Bt = ∅
for y = 1, . . ., R1 do //truncate core according to given truncation choices

for x = 1, . . ., R2 do
for z = 1, . . ., R3 do

Bt = Bt ∪ B(x, y, z)
end for

end for
end for

for i = 1, . . ., 3 do //truncate factor matrices corresponding to the core
Ui = Ui.leftCols(Ri)

end for

Figure 3.2.: Pseudocode for truncating a tensor decomposed with HOSVD as described in
Section 3.1.

logarithmic probability distribution of the absolute values of the core coefficients [Sut+11].
Every surviving coefficient x of the core and factor matrices is compressed to 9 bits. The first
bit is used to save the original sign, while the next 8 bit quantize the absolute value of the
coefficient to a value in [0, 255]:

|x| → 255 · log2(1 + |x|)/ log2(1 + |xmax|). (3.3)

, where |xmax| refers to the largest coefficient value. Because of its large magnitude and its
huge importance for the process of volume reconstruction, the hot corner element B(1, 1, 1) is
excluded from the quantization and stored separately. Figure 3.4 summarizes the examined
algorithm steps and gives a general outline on the core truncation compression technique.
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3. Implementation of Tensor Truncation

//input: core tensor B, factor matrices U{1,2,3} and target error εt

function CalculateR(B, U{1,2,3}, εt)
SAT = BuildSummedAreaTable(B)
Choices = ∅
for R1 = 1, . . ., I1 do //generate F and ε for all truncation combinations

for R2 = 1, . . ., I2 do
for R3 = 1, . . ., I3 do

F = (R1R2R3 + I1R1 + I2R2 + I3R3)/(I1 I2 I3)

ε =
√
‖T‖2 − SAT{R1R2R3}/‖T‖

Choices = Choices ∪ (F, ε, R1, R2, R3)
end for

end for
end for

Choices.sort(){Increasing F order}
Best = ∅
ε0 = MAX_VALUE
for i = 1, . . ., Choices.size() do //discard all suboptimal choices

(F, ε, R1, R2, R3) = Choices.getElement(i)
if ε < ε0

ε0 = ε

Best = Best ∪ (F, ε, R1, R2, R3)
end if

end for
r1, r2, r3 = Best.find(εt) //get optimal truncation choices
Truncate(B, U{1,2,3}, r1, r2, r3)

Figure 3.3.: Pseudocode for computing a set C of optimal truncation choices for a tensor
decomposed with HOSVD as described in Section 3.1.
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3. Implementation of Tensor Truncation

Input: T

HOSVD B, U1, U2, U3 Truncation Quantization

Output

Figure 3.4.: Tensor rank truncation compression algorithm flowchart. The input tensor is
decomposed via HOSVD. The resulting core tensor and factor matrices are then
truncated and then quantized for encoding. Adapted from [BP16].
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The paper of Ballester-Ripoll and Pajarola [BP16] pursues the goal of comparing various
volume compression approaches with regards to their compression ratio, reconstruction time
and magnitude of introduced error. As shown in Section 5.1.2, the authors realize, that, while
core truncation techniques achieve lower reconstruction times compared to thresholding
algorithms, they fall short in regard of compression ratio and approximation accuracy. Subse-
quently, Ballester-Ripoll et al. [BLP19] developed TTHRESH, a lossy thresholding algorithm,
that incorporates low approximation errors with the ability to manipulate compressed data
at small costs and dynamic target compression ratios. The algorithm can be split into three
main parts:

• First, the three dimensional input tensor T is decomposed into a core tensor B and
factor matrices U1, U2, U3 using the HOSVD (see Section 2.2)

• Secondly, the core is converted to a 1D vector, by scaling all C coefficients of the core
to 64-bit integers and ordering them in a list. Internally, the list is handled as a C× 64
binary matrix. The matrix is structured in such a way that the binary representations
of the coefficients are saved in the rows of the matrix, whereas the n-th column of the
matrix (bit-plane) holds the n-th significant bit of the coefficient. Thereafter the leftmost
most significant columns of the matrix are compressed with RLE followed up by AC
(see Sections 2.3.1, 2.3.2). This results in a thresholding of all insignificant coefficients,
such that the introduced squared error falls under a given target error.

• Lastly, the factor matrices are compressed in the same manner, using a special impor-
tance scaling.

4.1. HOSVD Decomposition

As described in Section 2.2, the HOSVD is used to compute a core tensor B and orthogonal
factor matrices U1, U2, U3 by computing the left singular vectors of the unfolded core along
each dimension Bi. Since we do not need the right singular vectors for further computations,
it is ineffective to calculate each ViT

for each Bi = UiΣiViT
. Hence it is far more efficient to

evaluate the matrix
Λ
Bi = Bi · BT

i and acquire the left singular vectors from the eigenvalue-
decomposition to form Ui, according to equation 2.2. Additionally, specialized self-adjoint

eigenvalue solver can be employed, since
Λ
Bi is defined as a real symmetric matrix, and thus a

diagonalization of its eigenvalue decomposition always exists. Because of the orthogonality
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4. Implementation of TTHRESH

of Ui, the right part ΣiViT
of the SVD can be determined with little computational overhead

and is refolded into a tensor, to shape the core B (Fig. 4.1) [BLP19]:

ΣiViT
= (Ui)−1Bi = UiT

Bi (4.1)

//input: given 3D tensor T
function HOSVD(T)

B = T
for i = 1, . . . , 3

Bi= unfold(B,i) //unfold core into 2D matrix in order to use SVD
Λ
Bi = Bi · BT

i

Ui = SelfAdjointEigenSolver(
Λ
Bi) //full eigenvalue decomposition,

Ui holds the eigenvectors in decreasing order with respect to their
eigenvalues

Bi= UiT · Bi //calculate new core with ΣiViT
= UiT

Bi
B = fold(Bi, i) //fold back 2D core into a tensor for next iteration

end for
end function

Figure 4.1.: Pseudocode for decomposing a tensor with HOSVD as described in Section 4.1.

4.2. Core Encoding

Volume data compression algorithms based on Tucker-decomposition exploit the fact that
the core B generated by the HOSVD tends to be very sparse for many real world data sets,
and can therefore effectively be approximated by discarding insignificant values. Hence, the
core encoding is the part of the compression where most data reduction can be accomplished,
but also the part where the primary error for the compressed approximation is introduced.
Fortunately, as discussed in Section 2.2.1, any instigated error can be controlled by observing
the core-coefficients, since any approximation error in the core transmits directly to the
reconstruction of the original tensor. For internal use, a given target relative error ε can be
converted to a sum of squared errors (SSE) via the following equation:

SSE = ε2‖T‖2 (4.2)

The decomposition of a tensor T into B and U1, U2, U3 with the help of HOSVD introduces
no error to the approximation of the data and from the use of the HOSVD alone, the original
tensor could be recomposed without any loss of accuracy. This implies in particular that
‖T‖ = ‖B‖ and thus no reduction of the original data size is achieved to this step. By defining
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4. Implementation of TTHRESH

s as the converted target error, the goal of the core encoding now is to reduce the core B in
such a way that its approximation B̃ fulfills

SSE(B, B̃) ≤ s (4.3)

Ballester-Ripoll et al. perform data compression with the help of bit-plane coding. To this end,
the absolute value of each coefficient c of the core is scaled to a 64-bit unsigned integer:

c→ b|c| · 263−blog2(m)cc (4.4)

, where m = maxc∈B(|c|) refers to the core’s largest element in magnitude. Figuratively, this
can be interpreted as scaling each coefficient’s absolute value in such a way that the scaled
value of the largest core element holds a "1"-bit at the most significant bit position. The signs
of the coefficients are stored separately in a dedicated bitmask. The core is then flattened by
ordering all scaled coefficient as a sequence and converting them to a binary matrix M for
internal use: the 64 bit binary representation 263 · c63 + · · ·+ 20 · c0 of each scaled coefficient
defines a row of M. The columns of M are further denoted as bit-planes, each bit-plane holds
bits from the core elements at the same position in the binary representation. Noteworthy, all
bits in the same bit-plane are equally important to the overall approximation error, regardless
of the coefficient’s absolute position in the core. In a greedy encoding strategy, the bit-planes
are compressed from the most significant bit-plane p = 64 to the least significant p = 0,
one bit-plane at a time (Fig. 4.2). As the core and as such the binary matrix M is usually
sparse (see Section 2.2.1), it is initialized with all values set to 0 at the start of the algorithm.
No bits of the core are encoded yet, and the approximation SSE error when reconstructing
the compressed data is maximal. Every time a "1"-bit of the core is encoded, information
from the core is transmitted to the compression and thus the approximation error is reduced.
All processed bit-planes p are traversed from the top to the bottom, and the core encoding
stops once the introduced error of the core falls below the target SSE error (see equation
3.5). As a result, only the first 64 ≥ p ≥ 1 bit-planes are compressed and in particular all
core coefficients with an absolute value |c| < 2p are discarded and approximated with 0.
One can observe an extensive surplus of "0"-bits, as well as continuous "0"-bit runs in the
leading bit-planes (see Section 5.1.1), caused by the overall sparsity of the core (except the hot
corner phenomenon). Ballester-Ripoll et al. efficiently use this structure to their advantage by
deploying modified run-length encoding (see Section 2.3.1) to compress the traversed bit-plane.
Lastly, the RLE-vectors are encoded again with the help of arithmetic coding (see Section
2.3.2).
Inspection of the bit-planes suggests a classification of each coefficient’s bits into two different
groups, according to their value distribution:

• leading bits describe the coefficients leftmost "1"-bit in addition to all leading left "0"-
bits. When traversed along the columns of the matrix M starting from the most
significant bit-planes, they tend to form long runs of "0"-bits that exhibit low entropy.
Accordingly, RLE+AC can compress these bits effectively, without introducing additional
approximation errors.
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• trailing bits refer to all remaining bits that appear to the right of the leftmost "1"-bit.
Contrary to the leading bits, they appear to randomly exhibit "0"- or "1"-bits. Hence,
RLE+AC is inept to compress these bits efficiently and they have to be stored verbatim.

In order to apply both encoding techniques on the same bit-plane, some way to differentiate
between leading and trailing bits is needed. To this end, a significance map in the form of
a binary mask is utilized. When traversing the bit-planes, the mask records and marks all
coefficients whose leftmost "1"-bit have already been encountered. Before endcoding a specific
bit, the bitmask is then checked and used to decide on RLE+AC (bit is flagged with a "0"-bit
in mask) or verbatim encoding (bit is flagged with a "1"-bit in mask).

4.3. Factor Matrices Encoding

The factor matrices U1, U2, U3 are essentially encoded in the same way as the core (see
Section 3.2.2). Although the factor matrices incorporate far fewer elements than the core,
each factor matrix is just as influential to the overall approximation error. It follows that it is
thus reasonable to spend more bits for the encoding of factor coefficients and the stopping
criterion for the bit-plane coding has to be adapted accordingly and should not halt at the
same position as determined for the core. In order to achieve a compression quality for
the factor matrices similar to the overall core approximation quality, the stopping criterion
should not be based solely on a target error, but on the compression ratio and accuracy
established during the core compression. One can observe that later bit-planes are not as
cheap to encode and do not decrease the introduced error as greatly as the first ones, since the
average entropy increases and the significance of the bit-plane is lowered. This behaviour is
imitated by the ratio αb = 4sb/4Sb = (sb − sb−1)/(Sb − Sb−1) between compression quality
(compression SSE sb) and storage cost (filesize Sb) after receiving b core bits. Since the first
traversed bit-planes are cheap to encode the ratio is largest for the first encountered bits. αb
is estimated for the core and used as a stopping criterion in order to put the weightings of
the core coefficients and the factor matrix coefficients for the overall compression quality
in relation. Encoding of each i-th factor matrices is stopped after bi bits, once αbi ≤ αb. As
the significance of each coefficient and thus the significance of each bit-plane in the factor
matrices is higher than in the core, this method results in the compression of more bit-planes
in the factor matrices than selected for the core.
Additionally, it is important to note that in the reconstruction of the HOSVD, each column
of the factor matrices U1, U2, U3 interacts with one core slice of B. Since the core slices carry
vastly different norms and significances (see Section 2.2.1), the matrix columns have different
importances for the compression accuracy, and need proper weighting before undergoing bit-
plane coding. Along each dimension i, appropriate weighting factors can easily be computed
by realizing that the diagonal matrix Σi of the SVD Bi = UiΣiViT

holds the core slice norms
εi

1 . . . εi
In

. In order to monitor any error introduced by the i-th factor matrix, each j-th column
of Ui has to be scaled by its corresponding core slice norm σi

j . For later reconstruction of the
original tensor, the norms have to be specifically saved.
A summarization of the TTHRESH algorithm can be found in figure 4.3.
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//input: vector c of C coefficients from the core or factor matrices,
target approximation error s, boolean isCore
function BitMaskEncdoding(c, s, isCore)

s̃ = |c|2 //approximation error is set to maximum
BM = ∅ //binary mask to record coefficients, whose leftmost "1"-bit has
already been encountered
M = scale(c) // C×64 binary matrix, holding all scaled values of c
for p = 64, . . . , 1 //traversing most significant bit-planes to less significant

for co = 1, . . . , C //iterating over coefficients
if BM[co] == 0 then

encodeBitRLE(M[co, p])
if M[co, p] == 1 then //mark leftmost "1"-bit encountered

BM = BM ∪ {co}
end if

else //leftmost bit of coefficients has already been encountered
encodeBitVerbatim(M[co, p])

end if
update current SSE s̃
if isCore and s̃ < s then //target compression quality reached

exit nested iterations
end if
calculate current proportion α̃: error reduction performed
by encoding the last co bits versus the storage cost
to encode them
if !isCore and α̃ < αb then //stopping criterion for factor matrices

exit nested iterations
end if

end for
end for
if isCore then

return α̃ as αb //save stopping criterion for
subsequent factor matrix encoding

end if
end function

Figure 4.2.: Pseudocode for compressing core and factor matrices of the HOSVD with bit-
plane coding as described in Sections 4.2 and 4.3.
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Input: T

HOSVD U1, U2, U3

B

Norm scaling

Bit-plane coding RLE+AC

Verbatim encoding Output

Figure 4.3.: Flowchart depicting the TTHRESH algorithm. The input tensor is decomposed
with HOSVD. Both core and factor matrices are encoded with bit-plane coding,
but the factor matrices are prior scaled with the core slice norms to apply proper
weighting. The bit-planes of the volume elements are either encoded verbatim or
with the help of RLE followed up by AC.
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5. Results

The main objective of this thesis is to analyze and improve the TTHRESH volume compression
algorithm by Ballester-Ripoll et al. in regards of their compression quality and compression
ratio [BLP19]. Specifically, the following hypotheses are investigated:
Firstly, the authors of TTHRESH discuss various properties of the HOSVD, but especially
the hot corner phenomenon seems to be not utilized to its full extend yet. As discussed in
Section 2.2.1, the core calculated by the HOSVD is usually sparse, but can be reordered in
such a way, that its core slices are decreasing in norm along the three dimensions. The result
of this ordering is the hot corner phenomenon, where all significant coefficients that contain
most of the core’s energy concentrate around the element B(1, 1, 1). After ordering of the
HOSVD core and factor matrices, the volume data is then encoded with bit-plane coding,
which incorporates RLE followed up by AC (see Section 4.2).
In case of AC, the final number of bits needed in the output message will converge to
match the number of bits dictated by the entropy of the input, given a sufficiently long
input sequence (see Section 2.3.2). This means that it is crucial to generate input messages
with a low entropy (vectors that contain mostly the same symbols) in the RLE step of the
algorithm in order to obtain good compression ratios with AC. Symbols that appear only a
few times in the input sequence can’t be encoded efficiently by corresponding codewords and
thereby decrease the compression ratio. In the original TTHRESH compression algorithm,
the bit-plane encoding traverses the core coefficients as the volume data is stored in memory
(memory ordering). This thesis assumes that volume data is represented in memory as a
cluster of consecutive mode-1/ y-dimension fibres (see Fig. 2.3 a), starting from the top of
the leftmost fibre of the foremost mode-1 slice and stretching to the bottom of the rightmost
fibre of the hindmost mode-1 slice. By reordering the core coefficients depending to their
Manhattan distance to the hot corner, the core coefficients with the highest magnitude will be
traversed first for every bit plane. Hence, the resulting RLE-vector will theoretically contain an
accumulation of small numbers, since the most significant coefficients with a high probability
for an unrecorded leftmost "1"-bit are grouped together (Fig. 5.1). As a consequence, the
general entropy of the RLE-encoding decreases. Thus, simply changing the order of the
traversed core coefficients in an advantageous way with respect to the hot corner can increase
the overall achieved compression rate without negatively affecting the approximation accuracy.

Secondly, linking the thresholding compression approach of TTHRESH with already well-
established compression techniques, such as core truncation, could potentially increase the
obtained compression ratio. The idea is inspired by Ballester-Ripoll et al. [BP16], who compare
thresholding and truncation compression techniques and suggest an hybrid compression
algorithm that combines the advantages of both approaches for further research. In the case
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(a) (b)

Figure 5.1.: Example of encoding of the core bit planes with RLE (green) and verbatim
encoding (blue) until a certain threshold after plane 61 is reached with memory
ordering (a) and traversal by Manhattan distance (b). Each bit plane is traversed
from the top to the bottom, but the ordering of the core coefficients in the bit
planes differs between the two examples. In the process, the significance map
was updated from 0 to 7 members. One can observe that the example with the
Manhattan ordering yields more RLE-symbols that have the same value, thus
carrying a smaller entropy than the example with memory ordering.

of TTHRESH, it stands out that all coefficients with an absolute value |c| < 2P are thresholded
away when stopping at bit plane P. Because of the sparsity of the core, as well as the slice
wise structure of the HOSVD components, this means that many core slices and therefore
also many scaled columns in the factor matrices hold only 0-values after bit-plane coding.
These factor columns and core slices carry no useful information for the reconstruction of
the original tensor from the HOSVD. Hence, they can be truncated without any loss of
compression quality. Additionally, it is interesting to investigate, if the acquired compression
ratio can be further enhanced by cutting away additional core slices, without affecting the
thereby introduced approximation error in a significant way.

5.1. Findings

In order to verify or disprove these hypotheses, numerous tests with various volume data sets
were conducted. The data sets were acquired from the Visualization Group TU Wien [Fac20].
Compression ratios as well as compression quality for different coefficient orderings and
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Table 5.1.: Comparison of the achieved compressed filesize of the (277x277x164) Stagbeetle
data set with different approaches to traverse the volume data with the TTHRESH
algorithm. "Original size" refers to the original filesize of the uncompressed
volume data. "Optimal" marks the filesize of the compressed volume data when
ordering the coefficients beforehand and traversing them in decreasing magnitude.
"Random" randomly permutes the core elements and functions as a base case
to measure possible benefits from advantageous reordering. "in-memory" does
not alter the traversal order of the coefficients in any way and the coefficients
are iterated in the sequence as the volume data is saved in-memory. "Manhattan
distance" traverses them according to their position in the core and distance to the
hot corner.

Original size Optimal Random In-memory Manhattan distance

Filesize (KB) 24.578 6442 12.890 11.087 11.396

core truncation choices were recorded and analyzed. Special attention was given to the
frequency models of AC and the structure of the bit planes, in order to discover advantageous
connections between the traversal order of core coefficients, RLE and AC. The above mentioned
tests were also performed on a perfectly sorted, as well as randomly sorted core, in order
to serve as a reference in order to measure the influence of the core coefficient ordering on
the compression ratio of TTHRESH. In order to design an improved hybrid compression
algorithm, compression quality, as well as reconstruction speed and achieved filesizes of the
TTHRESH and core truncation algorithm are benchmarked.

5.1.1. Taking Advantage of the Core Traversal Order

Table 5.1 suggests that increasing the compression ratio of the TTHRESH algorithm by
adjusting the traversal-order of the core coefficients is a reasonable idea. On its own, the
compression algorithm reduces the original data’s filesize from 24.578KB to 11.087KB, thereby
achieving an compression ratio of over 50%. A visual comparison of the original data and
the compressed data can be found in Figure A.3. On the other hand, ordering the core coeffi-
cients according to their magnitude in decreasing order before passing them to the bit-plane
encoding step further enhances the compression ratio to 42% and reduces the needed filesize
to 6442KB, without affecting the compression quality in any way. In order to measure the
influence of the iterating-order on the AC frequency model and the compression ratio of the
algorithm, a base test case with a randomly permuted core is constructed. The base test case
features a worse compression ratio than all other ordering strategies, and thereby indicates a
connection between compression ratio and core traversal order. As demonstrated by Table 5.2
and as mentioned above, this significant increase in compression ratio can be traced back to
the improved frequency model of AC. The magnitude ordering guarantees that a single run
of "1"-bits is followed by a run of "0"-bits at the beginning of every bit plane, to sum up all
insignificant coefficients without a "1"-bit on that plane. Thus, the overall number of symbols
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to encode in the RLE-vector decreases, while the frequency of small numbers (e.g. 0 from the
runs of "1"-bits) in the model rises. As such, the entropy of the RLE-vector declines and AC
can encode the bit planes very efficiently. In theory, a similar effect could be achieved by
traversing the core coefficients with regard to their position in the core, since the coefficient’s
distance to the hot corner gives a rough estimate about its magnitude. However, a closer
look of Table 5.1 gives a different impression: Traversing the core coefficients with respect to
their Manhattan-distance to the core does not improve the obtained compression ratio. On
the contrary, the required filesize rises from 11.087KB to 11.396KB, an increase of 2.8%. An
analysis of Table 5.2 and Figure 5.2 suggest that this difference in compression ratio is based
on the different frequency models. Although the Manhattan ordering results in grouping of
the core’s most significant elements and traverses over elements of higher magnitude than
the memory ordering at the start of the iteration sequence (Fig. 5.4), the latter contains more
zeroes and ones in its frequency model (Tab. 5.2). A broader look on the frequency models
shows that in both models, the smallest RLE-symbols obtain the highest frequencies, while
the frequency of longer RLE-runs decreases (Fig. 5.2). Both models converge in a similar
fashion, although the Manhattan distance ordering contains a spike around RLE symbol 65,
while the memory ordering holds an unusual spike at RLE symbol 276, which will be a key
in understanding the difference in compression ratios between both traversing techniques.
Using different weightings of the axis in conjunction with Manhattan ordering does not
improve this condition, either. The only traversal refinement that yields an improvement
of compression ratio is the alteration of the in-memory interpretation of the volume data,
without the use of Manhattan distance ordering. Traversing the volume according to the
x-,y- or z-dimension yields different compression ratios (Table 5.3), but the benefit of each
traversal option seems to be random and cannot be connect to attributes of the data set
(like size of dimensions, or magnitude of core-slice norms in order to find significant or
insignificant dimensions) and is thus hard to be taken advantage of, without precomputing
the compression results of the different orderings first. Straightforward optimal ordering
according to the magnitude of the core elements is also not a feasible option. Unlike with the
Manhattan ordering, a sorting of the core coefficients makes the intrinsic reconstruction of
the element’s original positions impossible, and the permutation order of the elements has to
be saved as an additional parameter, in order to restore the original tensor. The surplus of
this additional data exceeds the gain in compression ratio of the optimal ordering by far.

From these experiments it can be concluded that it is better to leave the traversal order
of the core coefficients untouched and use simple memory ordering in favor of Manhattan
distance ordering. The cause of this behaviour can be found in the slice-wise structure
of the core. When decompositing a tensor with the help of HOSVD, the resulting core is
comprised of slices, whose elements are quite homogeneous in the same slice and bolster a
higher absolute magnitude than other slice’s elements (see Section 2.2.1). Traversing the core
elements as they are stored in memory takes advantage of this structure. For example, the
(277× 277× 164) core of the Stagbeetle test volume set can be ordered in such a way that the
norms of its slices are decreasing along the three axes, with the hot corner on B(1, 1, 1). Using
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Table 5.2.: Comparison of the AC frequency models when compressing the(277x277x164)
Stagbeetle data set by traversing the volume according to the coefficient’s absolute
magnitude in optimal decreasing order (a), according to memory ordering (b),
or according to Manhattan distances to the hot corner (c). Every input symbol
of the RLE-vector (left column) is mapped to its overall frequency in the whole
input sequence (right column). For the optimal ordering (a) the sequence of
core coefficients guarantees that all "1"- and "0"- value bits are grouped in two
consecutive runs for every bit plane, with the run of "1"-bits at the beginning of
the plane, followed up by the "0"-bits of the remaining coefficients that are not
significant on that plane. Since the modified RLE only considers "0"-bit runs, the
run of consecutive "1"-bits at the start of the bit plane results in an accumulation of
RLE-symbol 0 for the AC frequency model, while the run of "0"-bits is summed up
by the larger RLE-symbols. (b) and (c) cannot guarantee a perfect splitting of their
bit planes in two runs of "1"- and "0"-bits and therefore produce broader frequency
models with a higher entropy and a worse compression ratio.

RLE symbol Frequency RLE symbol Frequency

0 6291779 12564413 1
6291778 5 12578957 1
6725673 1 12582638 1
7696434 1 12583380 1
8817590 1 12583524 1
9991453 1 12583548 1
11065824 1 12583553 1
11883963 1 12583554 1
12336345 1 12583555 1
12510451 1

(a)

RLE symbol Frequency

0 3046294
1 1726143
2 1046085
3 667650
4 419041
5 287737
6 195242
7 139162
8 102364
9 78422
10 59546

(b)

RLE symbol Frequency

0 2648321
1 1666766
2 1064871
3 663983
4 450738
5 326252
6 229180
7 165130
8 129119
9 98220
10 76716

(c)
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Figure 5.2.: Comparison of a wider view of the AC frequency models for in-memory (blue)
and Manhattan distance (orange) traversal of the (277× 277× 164) Stagbeetle data
set. The x-axis represents the unique RLE-symbols to be encoded, while the y-axis
maps each symbol to its corresponding frequency over the whole RLE-vector. For
both models, the frequencies of the large symbols following after symbol "300"
converge in the same manner and are cut off to enable a more focused view.
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Table 5.3.: Comparison of compression results when approximating the (277× 277× 164)
Stagbeetle, (246× 246× 221) Present and (256× 249× 256) Christmas Tree volume
data sets with TTHRESH with different orderings along the three dimensions.
In case of the y,x,z ordering, all mode-1 fibres of the tensor slices (Fig. 2.3) are
traversed from top to bottom, beginning with the leftmost fibre of the slice and
iterating the mode 1 slices from the front to the back. As a stopping criterion a
target error of ε = 0, 0003 is given for each compression, which translates to an
approximation error of 0,03%. For each depicted test data set connections between
compression ratio (a) and maximum slice norm along each dimension (b) were
examined. The Stagbeetle and Present data set gain the best compression ratio
(marked in bold letters) when traversing their cores according to the magnitude-
ordering of their maximal slice norms. Extensive testing with numerous data sets
breaks this trend. In this example, the Christmas Tree test set does not provide the
best compression ratio when iterating the core according to the dimension with
the highest maximal slice norm.

Stagbeetle Present Christmas Tree

Ordering Filesize (KB) Filesize (KB) Filesize (KB)

y,x,z 11.087 16.015 20.665

y,z,x 11.085 16.015 20.666

x,y,z 11.078 16.017 20.674

x,z,y 11.071 16.015 20.675

z,y,x 11.168 15.958 20.716

z,x,y 11.167 15.957 20.715

(a)

Stagbeetle Present Christmas Tree

Dimension Max norm Max norm Max norm

y-dimension 351289 544339 183952

x-dimension 434406 555657 230224

z-dimension 355502 625926 180539

(b)
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Figure 5.3.: Example for traversing the (277, 277, 164) Stagbeetle data set with memory
ordering. The core is structured in such a way that the uppermost slice (violet)
holds the core coefficients with the highest magnitude. When iterating column
wise in the bit-plane encoding (blue arrows) the RLE may increasingly encounter
"0"-bit runs of size 276 (blue number-strings) from the underlying slices, before
starting again with the next element from the uppermost slice.

memory ordering (e.g. each mode-1 / y-dimension slice is saved column-wise in-memory),
the core elements are iterated perpendicular to a specific dimension (e.g. the y-dimension)
(Fig. 5.3). As a consequence, the RLE step will encounter many "0"-bit runs of length similar
to the length of that dimension or its multiples. The runs can be efficiently represented as a
single symbol by the RLE, while the overall frequency of small RLE-symbols increases, thus
developing a low entropy and effective encoding with AC. This effect can also be seen in
figure 5.2, as the spike at RLE-symbol 276 of the in-memory graph works against the general
downtrend of the frequencies and stems from the described increased probability of "0"-bit
runs corresponding to the length of the y-dimension. On the other hand, the Manhattan dis-
tance of a core coefficient to the hot corner only gives a rough estimate about the coefficients
absolute magnitude, and the core elements won’t be ordered in strictly decreasing magnitude
order, like in the optimal ordering. Thus, when using Manhattan distance ordering, the
magnitudes of the coefficients will spike seemingly at random and the lengths won’t be
structured as nicely, which results in a larger entropy. Figure 5.4 illustrates this uneven
magnitude distribution: In the in-memory graph, one can see that the absolute values of the

29



5. Results

core elements are overall quite similar. In the graph depicting the Manhattan ordering, huge
spikes in core significance of the coefficients can be registered. When iterating over the bit
planes of the core, the RLE will thus encounter more uniform runs in the memory ordering
than in the Manhattan ordering, which results in a smooth AC frequency model with a lower
entropy and a better compression ratio.

Although adjusting the traversal order of the core according to the Manhattan distance
of the core elements to the hot corner did not bring the expected gain in compression ratio
(Tab. 5.1), the findings of the AC frequency model (Fig. 5.2) are interesting and motivate an
alternative approach to utilize the hot corner phenomenon. One can notice that the above
described layout of the in-memory ordered tensor data results in spikes in the AC frequency
model at the size of the y-dimension, or multiples of it. This observation inspires the use
of factorization, in order to decrease the overall entropy of the encoded RLE-vector and
thus increase the compression ratio. RLE-symbols z = x · y are factorized and saved into
two symbols x and y, where one of the symbols is the mentioned size of the y-dimension,
or multiples of it. This way, larger RLE-symbols that only appear a few times in the AC
frequency model are removed and replaced with two smaller symbols that appear more often.
Because the frequency of these smaller symbols increases as a result of the factorization, it
is more effective to encode two symbols in favor of one. Figure 5.5 gives an overview over
the needed bits to encode each RLE-symbol via AC. Stemming from the spikes in the AC
frequency model, the y-dimension size and and its multiples are able to be encoded more
efficiently with less bits, than comparable RLE-symbols in the same magnitude ranges. Hence,
the motivation for the use of factorization int the compression pipeline seems to be sound. For
example, encoding the symbol "1380" would originally require 22 bits. Clever factorization
into "5" (representable in 5 bits) and "276" (representable in 14 bits) would decrease the
required bits to 19 bits.
The factorization choices are generated from the size of the y-dimension and all multiples
of it, which exist in the AC frequency model. Before encoding the RLE-vectors with AC,
every RLE-symbol is checked for good factorization choices, and the choice with the most
favorable bit-count is chosen. Furthermore, the factorization is marked with a special symbol
in order to reconstruct the original RLE-symbol in the decoding step. It is important to note
that as such not all symbols or even all symbols with a low AC frequency are factorized.
The factorization of a symbol z into x and y is only beneficial for the AC step, if x and y are
symbols of already high frequencies. In essence, this means that only those RLE-symbols
are factorized, which have the size of the y-dimension, or one of its multiples, as a possible
divider. The amount of RLE-symbols that can thus be efficiently represented by factorization
is marginal in comparison to the overall number of encoded RLE-symbols. In case of the
(277× 277× 164) Stagbeetle test set, only 1% of all 800000 symbols are able to be factorized
in an advantageous way. Since the bit-gain often just influences the decimal range and thus
the actual number of bits needed for encoding is not changing, only 5100 bits are saved by
factorization of the Stagbeetle test set. Compared to the overall TTHRESH-compressed filesize
of 11.087KB of the test set, the factorization of the RLE-symbols has in consequence next to
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Figure 5.4.: Comparison of the first 40 iterated core elements when using ordering by memory
(blue) or Manhattan distance (orange). The first element in both cases is the hot
corner element B(1, 1, 1), which has been cut from this representation. The x-axis
represents the core elements c, while the y-axis maps each element to its absolute
magnitude. One can see that the Manhattan distance ordering holds overall larger
elements than memory ordering in the first 40 entries and includes big spikes in
core element magnitude.

no influence on the overall compression ratio.
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Figure 5.5.: Overview of the needed bits (y-axis) to encode each of the first 1800 RLE-symbols
(x-axis) of the (277 × 277 × 164) Stagbeetle test set. As the RLE-symbols are
encoded with AC, the needed bits for a symbol A are calculated according to
the information value of the entropy: Bit(A) = − log2(p(A)), where p(A) refers
to the probability of A occurring in the RLE-sequence. The orange dots refer to
multiples of the y-dimension (277).
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Table 5.4.: Bench-marking of encoding and reconstruction speed in ms for the TTHRESH,
core truncation and TTHRESH-Truncation hybrid algorithm when compressing
and decompressing the (277× 277× 164) Stagbeetle test set. The average values of
6 tests conducted on different dates and times of the day are depicted below.

TTHRESH Truncation Hybrid

Encoding (ms) 10.240 7.643 10.255

Decoding (ms) 8.639 4.906 8.414

Table 5.5.: Comparison of core truncation and TTHRESH in regards of their compression
ratio and quality. All tests were conducted on the (277,277,164) Stagbeetle test set.
Row "Original" refers to the original volume data, without any compression, while
"TTHRESH" and "Truncation" point to the compression results when approximating
the original data with said techniques. The "Control sequence" is a sequence of
volume values read out after compression of the volume to examine the real
approximation error. The sequence is scaled to integers for a better readability
and does not reflect the exact values after reconstruction of the compressed tensor.
Although TTHRESH and Truncation arrive at similar compression ratios, TTHRESH
obtains a better approximation of the original data.

Compression Method Compressed filesize Control sequence Approximation error

Original 24578KB (284,1066,1530,754) 0%

TTHRESH 11.087KB (283,1063,1526,753) 0,03%

Truncation 10.730KB (257,978,1438,698) 8%

5.1.2. TTHRESH Truncation Hybrid

Comparing compression of volume data by core truncation (Section 3) against core threshold-
ing (Section 4) yields the same results as observed in [BP16]: While core truncation boasts
better encoding and decoding speed (Table 5.4), thresholding achieves better compression
quality than truncation for similar compression ratios (Table 5.5). This thesis values com-
pression quality over reconstruction speed, thus TTHRESH is better suited as a basis for
further improvement of the achieved compression ratio with a TTHRESH-Truncation hybrid
compression algorithm. TTHRESH combines the use of HOSVD with RLE and AC in the
bit-plane coding step of the algorithm, in order to achieve a smooth approximation of the
volume data (see Fig. 4.3). After the bit-plane coding, any coefficients with an absolute value
|c| < 2P are reduced to 0 when stopping at bit plane P. By precomputing the stopping plane
P, the TTHRESH-Truncation hybrid can determine any core slices and scaled factor matrix
columns that would be affected by this thresholding. If all elements in a thresholded core slice
or scaled factor matrix are reduced to 0, the whole slice or corresponding factor matrix bears
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no useful information for the reconstruction of the original volume data. By combining core
truncation with the already established TTHRESH, these core and factor elements (further
referred to as zero factor columns and core slices) can be cut off from the encoding process, and
are just intrinsically assumed with value 0 for the reconstruction of the tensor. Thereby the
number of reconstruction steps and overall amount of volume data to be saved is reduced.
This data reduction results in slightly higher reconstruction speed (Table 5.4) and theoretically
in an improved compression ratio. It is also compelling to investigate the option to truncate
additional insignificant core elements beyond the zero factor columns and core slices, without
severe worsening of the overall approximation quality. Apart from the clipping of said factor
columns and core slices, the hybrid algorithm continues with bit-plane coding as described
in Section 4.2. As a reference, Figure A.2 depicts a flowchart of the TTHRESH-Truncation
hybrid algorithm.

Tests with the hybrid compression technique reveal a marginal increase in compression
ratio compared to the original TTHRESH compression algorithm (Table 5.6). Although con-
siderable parts of the core were cut off (about 10% in case of the (277× 277× 164) Stagbeetle
test set), the advantage in compressed filesize falls short of expectations and only an improve-
ment of about 1% from cutting off the zero factor columns and core slices can be realized.
Moreover, the gain in compression ratio from truncation declines drastically with broader
approximations of the original volume data and decreasing overall compressed filesize (Fig.
5.7a, Tab. 5.6).
The truncation of additional significant core data performs in a similar way. When answering
the question on how much of the overall hybrid compression error should be contributed
by the TTHRESH target error and the truncation error, one has to consider a criterion that
measures the influence of the TTHRESH- and truncation error on the compressed filesize and
approximation quality (Fig. 5.6). The ratio α plots the overall compression error versus the
compressed filesize and is calculated for different TTHRESH- and truncation error pairs. A
high α indicates a high compression ratio achieved by a small introduced error. Even though
the TTHRESH- truncation error pairs peak in a similar way, no intersection points can be
found. This means that a broader approximation in the TTHRESH-step has a higher influence
on the compression ratio with a smaller overall approximation error than the truncation of
additional core slices. Although the additional truncation of core elements results in further
improvement of compression ratio, the thereby introduced error to the overall approximation
quality scales faster than with using a comparable TTHRESH target error. This uneven
scaling makes it impossible to achieve a better hybrid compression ratio by shifting to a
lower TTHRESH target error and a higher truncation error. Thus, the cutting of additional
significant core slices at the cost of an additional truncation error is suboptimal compared to
compression with a higher TTHRESH target error, since with broader TTHRESH a similar
compression ratio with a better compression quality can be achieved.
However, it is possible to use a list of best truncation choices, similar as mentioned in Section
3.1, to further reduce the core in such a way that the truncation error won’t be noticeable in
comparison to the overall target error ε given by the TTHRESH-base. Figure 5.7 illustrates
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Table 5.6.: Comparison of obtained filesizes when compressing the (277,277,164) Stagbeetle
data set with TTHRESH or TTHRESH-Truncation hybrid, using different approxi-
mation errors to achieve different compression ratios. If the test set is compressed
with a larger allowed approximation error, the accomplished compression ratio
rises in both cases. Although the hybrid method performs slightly better (about 1%)
the advantage of using the TTHRESH-Truncation hybrid declines, as the filesize
after compression decreases. In case of the TTHRESH-Truncation hybrid, 12, 55
and 4 slices along the y-, x- and z-dimension of the core and factor matrices were
identified as zero factor columns and core slices (amounting to about 10% of all
core slices) and were cut off respectively.

Approximation error filesize TTHRESH filesize Hybrid Hybrid advantage

0% 20.050KB 19.885KB 165KB
0,03% 11.087KB 11.005KB 82KB
0,3% 7.050KB 7.013KB 37KB
3% 3.230KB 3.222KB 8KB

this connection between TTHRESH target error and additional hybrid truncation error. One
can notice that a more generous TTHRESH target error enables the use of a broader hybrid
truncation error, without causing major differences in compression quality (Fig. 5.7b). Figure
5.7a depicts the gain in filesize of the hybrid algorithm when truncating further core slices
in addition to the zero factor columns and core slices. Even though the hybrid’s advantage
in filesize decreases with a broader volume approximation by the TTHRESH-algorithm, the
previous observation enables the use of a more generous truncation of the core in case of a
higher TTHRESH approximation error, thereby countering this downwards trend. Figure 5.6
suggests that the broad truncation of additional significant core slices in inefficient compared
to the use of a higher TTHRESH target error. Nevertheless, a small enough truncation error
corresponding to the TTHRESH target error can be contained in such a way that no significant
drop in compression quality is introduced, while additional core slices are truncated. There-
fore, this method is suggested as a pure improvement over simply truncating the zero factor
columns and core slices. Figure A.4 depicts the rendering results of the TTHRESH-Truncation
hybrid algorithm when applying different additional truncation errors. As described above, a
larger truncation error results in visible rendering artifacts that worsen the overall compres-
sion quality, while a controlled and small enough truncation error is not causing any drop in
approximation value.

The above mentioned overall poor improvement of the TTHRESH-Truncation hybrid can
be traced back to the bit-plane coding of the TTHRESH algorithm. In TTHRESH, core and
factor elements are not encoded as singular elements (like in quantization), but are merged
as RLE-runs in the bit-plane coding. Truncating the core and thereby reducing the number
of core elements does thus not decrease the overall number of encoding symbols of the
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Figure 5.6.: Influence of the TTHRESH target error and truncation error on the overall ap-
proximation error εO and compression filesize S. Numerous correlations between
TTHRESH target error (0.03% orange, 0.04% red, 0.05% blue plot) and truncation
errors (x-axis) are analyzed. The ratio α on the y-axis plots the overall hybrid
compression error vs. the compression filesize and is obtained with the formula
α = (100− εO)/S. Thereby a higher α indicates a better compression ratio with
a smaller overall compression ratio. Although the ratios α peak around a trun-
cation error of 1% for all analyzed TTHTRESH target errors, none of the plots
provide intersection points. This suggests a higher scaling and influence of the
TTHRESH target error on the achieved compression quality and ratio compared
to the truncation error.
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Figure 5.7.: Figure (a) represents a comparison of gained filesizes (y-axis) when introducing
an additional error (x-axis) with truncation in the TTHRESH-Truncation hybrid
method compared to compression ratios achieved by the original TTHRESH
algorithm. For each TTHRESH target error (0,03%: orange, 0,3%: red, 3%: blue
plots), three truncation choices with different truncation errors were analyzed.
The plotted lines represent the achieved filesizes when compressing the (277×
277 × 164) Stagbeetle data set with TTHRESH, the continuous lines refer to
compressed filesizes after approximation with the hybrid method, given the
TTHRESH target error and additional truncation error. Figure (b) depicts the
difference in compression quality between approximation with pure TTHRESH
and the hybrid technique (y-axis) when using a specified truncation error (x-axis)
on top of the already given TTHTESH target error. The same volume set as in
(a) was used for the tests and the same color-coding in regard of the TTHRESH
target error applies.
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Table 5.7.: Comparison of compressing the (277× 277× 164) Stagbeetle test data set with an
TTHRESH approximation error of 0,03% and no additional truncation error in case
of the hybrid technique. "Verbatim size" compares the number of entries of the
verbatim-vector of the bit-plane coding, "RLE size" the number of elements in the
RLE-vectors and "’1’-bits RLE encoded" the number of ’1’-value bits encountered
during RLE. All three values are the same for both techniques.

Algorithm Verbatim size RLE size "1"-bits RLE encoded

TTHRESH 5,29266 e7 8,4911 e6 8,49112 e6

Hybrid 5,29266 e7 8,4911 e6 8,49112 e6

RLE-vector (see Tab. 5.7). Small core elements are reduced to "0"-values in the bit-plane
coding step and can be efficiently compressed with RLE. This translates to the compression
of the factor matrices, since corresponding factor columns to the core slices are scaled and
reduced to "0"-values. Truncation of the negligible core slices and factor columns does thus
not eliminate the costly core elements with "1"-value bits on the bit planes from the encoding
process and hence hardly improves the compression ratio. Furthermore, the truncation of
the zero factor columns and core slices does also not benefit the verbatim-encoding of the
bit-plane coding, since only slices with insignificant norms are cut off. These slices exclusively
hold core elements of small magnitudes, which would not be classified as significant by
the significance map and are thus not encoded verbatim (Tab. 5.7). Instead, the frequency
and length of runs in the RLE-step of the hybrid algorithm are altered, which results in a
modified AC frequency model (see Section 5.1.1). An analysis of the AC frequency models
(Tab. 5.8, Tab. 5.9) of the hybrid technique and original algorithm reveals the difference in
probability distribution between both models: Although both models hold the same number
of overall input symbols, the hybrid frequency model holds less unique input symbols than
the frequency model of the original TTHRESH algorithm (3255 vs. 3579 unique symbols).
The small magnitude symbols of the RLE-vector that appear the most in both models, boast
a slightly higher frequency in the hybrid technique model. Overall, symbols that appear
only once or twice in the whole RLE-vector are represented less in the frequency model of
the hybrid approach. As a result, the input symbols of the hybrid’s frequency model are
distributed more evenly and the entropy of the RLE-vector declines, thereby ensuing a more
effective compression.
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Table 5.8.: First ten values of the frequency model of the AC step when compressing
the(277x277x164) Stagbeetle data set with TTHRESH (a) or hybrid of TTHRESH
and truncation (b). Each symbol from the RLE-vector (left column) is mapped to
its frequency of appearing over the whole input vector (right column)

RLE symbol Frequency

0 3046294

1 1726143

2 1046085

3 667650

4 419041

5 287737

6 195242

7 139162

8 102364

9 78422

10 59546

(a)

RLE symbol Frequency

0 3052637

1 1738943

2 1062244

3 682511

4 431535

5 298272

6 202725

7 147266

8 111265

9 85548

10 67113

(b)
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Table 5.9.: Comparison of frequency models of the TTHRESH (a) and TTHRESH-Truncation
hybrid (b) in regards of their frequency distributions. All frequencies of the
RLE-symbols were analyzed and ordered according to their occurrences in the
frequenzy model in descending order. RLE-symbols that occur only a few times
in the RLE-vector have a low frequency, which appears overall the most in the
frequency models. On the other hand, recurring symbols tend to have unique high
frequencies that emerge only a few times in the models. In general, the hybrid
technique boasts slightly less RLE-symbols with a low frequency (e.g. 1726 vs 1971
1-frequencies), thereby reducing its entropy.

Frequency Occurrence in model

1 1971

2 368

3 197

4 115

5 67

6 53

7 42

8 43

9 34

10 25

(a)

Frequency Occurrence in model

1 1726

2 353

3 177

4 105

5 68

6 59

7 39

8 40

9 34

10 25

(b)
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6. Discussion

As described in Section 5, the main goal of this thesis is to analyze and improve different
popular volume data compression algorithms, mainly the TTHRESH algorithm by Ballester-
Ripoll et al. [BLP19]. By making use of the hot corner phenomenon as well as advantageous
combination of two compression algorithms, we hope to enhance the gained compression
ratio, without decreasing overall compression quality. As discussed in Section 5.1.1, it is quite
challenging to improve the TTHRESH compression ratio by adjusting the traversal order of
the core according to the hot corner phenomenon alone. Although the reordering of the core
coefficients according to their Manhattan distance to the hot corner seems promising at first
glance, the thereby occurring spikes in core element magnitude of the traversal sequence
result in a higher entropy and worse compression ratio than traversing the volume data
according to its slice-wise structure.
Changing the underlying arithmetic coding to other entropy coders, like Huffman coding,
does also not improve the achieved compression ratio. Entropy coders try to achieve the
optimal bit representation of the encoding sequence as indicated by the entropy, but various
encoding techniques perform different on individual data sets. Generally, Huffman coding
produces the best results when the probabilities of occurrence in the frequency model are
powers of 1⁄2. On the other hand, AC offers more efficient encoding in general. AC is flexible in
that it provides efficient encoding with any probability function, source alphabet or encoding
alphabet and is in fact nearly optimal [MM03] and is thus better suited for our approach on
volume data compression.
When comparing TTHRESH to other popular volume data compression algorithms, like core
truncation, one can notice that TTHRESH is not designed to boast high encoding and decoding
speeds, but offers a very fine target error granularity. Since the TTHRESH compression can
stop at any arbitrary part of the bit-planes, very smooth approximations of the original data
according to the given target error with comparable compression ratios to core truncation can
be accomplished. This motivates the use of TTHRESH as a basis of a TTHRESH-Truncation
hybrid algorithm for further improvement of the compression ratio at consistent compression
quality. However, adding core truncation to TTHRESH as described in Section 5.1.2 does only
marginally increase the achieved compression ratio and thus falls short of our expectations.
While considerable parts of the core are truncated according to the reduction of zero factor
columns and core slices, an improvement of only 1% in compression ratio can be practically
realized. The cause of this minor improvement of hybrid compression ratio can be traced back
to redundancy between the TTHRESH thresholding and the truncation of zero factor columns
and core slices. As the overall compression quality of TTHRESH and TTHRESH-Truncation
hybrid is supposed to stay the same, only insignificant core coefficients are removed from
the compression during truncation. In particular, the number of overall encoding symbols of
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the RLE-step of the TTHRESH-part does not change. Instead, the core truncation influences
the frequency of the RLE-symbols, which results in a smoother AC-frequency model and
a slightly lower entropy and thus compression ratio. One has to note, however, that the
reduction of the core as the consequence of core truncation also reduces the overall amount
of reconstruction steps and reconstruction time of the volume data, since the values of large
parts of the compressed data are intrinsically known to the algorithm and do not have to be
decompressed. As a result the hybrid approach boasts slightly better reconstruction time of
the original data, which can be helpful for many analytic visualization purposes.
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7. Conclusion

In this thesis, we implemented and analyzed the TTHRESH- as well as core truncation volume
compression algorithm. Approaches to improve the TTHRESH fell short of our expectations
and did only marginally improve the achieved compression ratio and reconstruction time.
Firstly, the proposal to adjust the volume traversal order in an profitable way by incorporating
the hot corner phenomenon did not increase the acquired compression ratio. Compared
to the natural in-memory traversal of the HOSVD core, the altered traversal by Manhattan
distance to the hot corner did disturb the HOSVD core’s natural slice-wise structure and
thus increased the overall entropy of the encoded message. Our second approach with the
truncation of insignificant zero factor columns and core slices did reduce the tensor and the
amount of volume data. However, this truncation had no influence on the overall amount of
actual encoding data and is thus not very beneficial for improving the compression technique.
There still exist multiple open issues and methods that were not tested in this thesis but could
potentially benefit the TTHRESH compression ratio.

7.1. Outlook

We encountered numerous problems during the improvement of the TTHRESH-algorithm.
Although the changing of the traversal order of the HOSVD core according to the hot corner
phenomenon is promising from a theoretical point of view, the thereby introduced spikes
in core coefficient magnitude make it quite hard to improve the gained compression ratio.
Instead, we propose the slice-wise structure of the HOSVD core as a possible basis for future
improvements of the TTHRESH-algorithm. To that effect our approach to factorize the RLE-
symbols according to the size of the tensor dimensions does also not enhance the compression
ratio, as too few symbols are affected by this factorization. A possible alternative to the
factorization of RLE-symbols is the replacement of RLE-symbols according to the dimensional
sized of the volume data: Even if the RLE "0"-bit runs along the bit-planes of the TTHRESH
bit-plane encoding are interrupted by a "1"-value bit and do not form a smooth run to match
the size of the traversed dimension (in case of the (277× 277× 164) Stagbeetle data set runs
of size 276), the runs tend that sum up according to the dimensional size of the traversed core
slice. For example for the (277× 277× 164) Stagbeetle data set, many consecutive RLE-runs
along the bit-planes can be arranged into groups to sum up to 276. The last RLE-symbol of
the group can then be removed and is replaced with just the instruction for the decoder to
sum up to 276. This way, a RLE-symbol of low frequency may be replaced with a RLE-symbol
with high frequency, which results in an overall lower entropy for the encoding message and
a more efficient compression by AC.
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A. Figures

A.1. Example of Tensor Unfolding

Figure A.1.: Example of unfolding the (I1 × I2 × I3)-tensor T into the three mode-i matrices
by ordering the i-mode fibres of the tensor as the columns of the matrices. Thus,
the mode-1 matrix A1 is of size (I1× I2 I3), the mode-2 matrix A2 of size (I2× I3 I1)
and the mode-3 matrix A3 is of size (I3 × I1 I2). Adapted from [Qia+09].
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A.2. TTHRESH-Truncation Hybrid Flowchart

Input: T

HOSVD U1, U2, U3

B

Norm scaling

Precompute P

Calculate truncation choices

Truncate volume

Bit-plane coding RLE+AC

Verbatim encoding Output

Figure A.2.: Flowchart depicting the TTHRESH-Truncation hybrid algorithm. For the most
part, the algorithm is similar to the original TTHRESH algorithm described
in Section 4. The sections "Precompute P", "Calculate truncation choices" and
"Truncate volume" deviate from the original algorithm. As described in Section
5.1.2, the precomputation of the stopping plane P allows to asses the factor
columns and core slices, which would hold only zero-values after bit-plane
encoding. The truncation choices are then calculated in such a way that only the
described zero factor columns and core slices are truncated from the volume and
the overall amount of volume data is reduced. After the truncation the hybrid
algorithm continues as the original TTHRESH.
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A.3. Rendering Results of TTHRESH and TTHRESH-Truncation
Hybrid

(a)

(b)

Figure A.3.: Rendering of the (277× 277× 164) Stagbeetle test set with ParaView [Aya15]. On
a) the original uncompressed volume set is depicted (filesize 24.578 KB). On b)
the compressed file is illustrated, when encoding the testset with TTHRESH with
a target error of 0.03%, realizing a filesize of 11.087 KB.
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Figure A.4.: Rendering of the (277× 277× 164) Stagbeetle test set with ParaView [Aya15]
when employing the TTHRESH-Truncation hybrid algorithm with a TTHRESH
target error of 0.03%. On a) the algorithm is applied with an additional truncation
error of 0.1% (filesize 10.939 KB), on b) an additional truncation error of 0.5%
(filesize 10.525 KB) is used and on c) the algorithm is utilized with an additional
truncation error of 1% (filesize 9.928 KB). One can notice that a) is visually
equivalent to the rendering result of the pure TTHRESH algorithm (Fig. A.3b).
On b) first minor rendering artifacts around the beetle’s legs appear and in c)
major artifacts on the stag beetle’s whole body emerge.
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Glossary

Bit-plane coding Compression technique that traverses over the HOSVD core elements and
iteratively compresses the same bit from the element’s binary representation (bit-plane),
starting from the most significant bit-plane. 1, 18–21

Entropy Information content that describes the degree of randomness and uncertainty in a
message. When encoding, the entropy gives a lower bound on the expected number of
bits needed to represent each symbol of the input message. A low entropy suggests that
the message can be encoded efficiently. 6, 7, 18, 19, 22, 23, 25, 26, 29, 30, 32, 38, 40, 41

Fibre Higher order analogues to matrix rows and columns of a tensor. Obtained by iterating
over the tensor elements and fixing all but a single index along the dimensions. 3, 22,
28, 44

HOSVD Higher order single value decomposition: Decomposes original tensor T into core
tensor B and factor matrices Ui. 3, 4, 10, 12–17, 19–23, 25, 33, 43

Hot Corner Element B(1, 1, 1) of the HOSVD core. The core elements with the highest
absolute magnitude concentrate around this element. 4, 5, 11, 13, 18, 22, 24–26, 29–31,
41, 43

Memory ordering Representation of a tensor’s elements as stored in-memory. This thesis
assumes that a 3D tensor is represented in memory as a cluster of consecutive mode-1/
y-dimension fibres, starting from the leftmost fibre of the foremost mode-1 slice and
stretching to the rightmost fibre of the hindmost mode-1 slice. 22, 23, 25, 26, 29, 30

Run Sequence of the same consecutive data values in a row that is compressed to a single
symbol by RLE. 6, 18, 24–26, 29, 30, 35, 38

Slice 2D section of a 3D tensor. Obtained by iterating over the tensor elements and fixing all
but two indices along the dimensions. 3, 10, 11, 19, 21–23, 25, 28, 29, 33–35, 38, 41, 43

Tensor Higher order arrays of dimension N ≥ 1. In this thesis, we refer to a tensor as a
multiarray of dimension 3. 1–5, 11–13, 15–17, 19, 21, 23, 25, 28, 30, 33, 34

TTHRESH Lossy volume compression algorithm by Ballester-Ripoll et al. [BLP19]. 1, 16, 19,
21–24, 28, 30, 33–43, 45, 49
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Glossary

Zero factor columns and core slices Core slices and corresponding factor matrix columns
that contain only coefficients with the value "0" after TTHRESH thresholding by bit-plane
coding and core slice norm scaling. 34, 35, 38, 41, 43, 45
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Acronyms

AC Arithmetic coding. 6, 7, 16, 18, 19, 21, 22, 24–27, 29, 30, 32, 33, 38, 39, 41, 42, 48, 49

MLOC Multi-level Layout Optimization Framework for Compressed Scientific Data. 10

RLE Run-length encryption. 6, 16, 18, 19, 21–27, 29, 30, 32, 33, 35, 38–40, 42

SAT Summed-area table. 11

SSE Sum of squared errors. 17–19

SVD Singular Value Decomposition. 3, 4, 17, 19

TTM Tensor times matrix product. 3
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